Sensitivity of mid-19th century tropospheric ozone to atmospheric chemistry-vegetation interactionsHollaway, M. J., Arnold, S. R., Collins, W. J. ORCID: https://orcid.org/0000-0002-7419-0850, Folberth, G. and Rap, A. (2017) Sensitivity of mid-19th century tropospheric ozone to atmospheric chemistry-vegetation interactions. Journal of Geophysical Research: Atmospheres, 122 (4). pp. 2452-2473. ISSN 2169-8996
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1002/2016JD025462 Abstract/SummaryWe use an Earth-System model (HadGEM2-ES) to investigate the sensitivity of mid-19th century tropospheric ozone to vegetation distribution and atmospheric chemistry-vegetation interaction processes. We conduct model experiments to isolate the response of mid-19th century tropospheric ozone to vegetation cover changes between the 1860s and present-day and to CO2 induced changes in isoprene emissions and dry deposition over the same period. Changes in vegetation distribution and CO2 suppression of isoprene emissions between mid-19th century and present-day, lead to decreases in global isoprene emissions of 19% and 21% respectively. This results in increases in surface ozone over the continents of up to 2 ppbv and of 2-6 ppbv in the tropical upper troposphere. The effects of CO2 increases on suppression of isoprene emissions and suppression of dry deposition to vegetation are small compared with the effects of vegetation cover change. Assuming present-day climate in addition to present-day vegetation cover and atmospheric CO2 concentrations, leads to increases in surface ozone concentrations of up to 5 ppbv over the entire northern hemisphere (NH), and of up to 8 ppbv in the NH free troposphere, compared with a mid-19th century simulation. Ozone changes are dominated by: 1) the role of isoprene as an ozone sink in the low NOx mid-19th century at30 mosphere, and 2) the redistribution of NOx to remote regions and the free troposphere via PAN (peroxyacetyl nitrate) formed from isoprene oxidation. We estimate a tropospheric ozone radiative forcing of 0.264W m−2 and a sensitivity in ozone radiative forcing to mid-19th century to present-day vegetation cover change of -0.012W m−2.
DownloadsDownloads per month over past year
Anenberg, S. C., L. W. Horowitz, D. Q. Tong, and J. J. West (2010), An Estimate of the
Global Burden of Anthropogenic Ozone and Fine Particulate Matter on Premature Human
Mortality Using Atmospheric Modeling, Environmental Health Perpectives, 118 (9),
1189–1195, doi:10.1289/ehp.0901220.
Arneth, A., U. Niinemets, S. Pressley, J. B¨ack, P. Hari, T. Karl, S. Noe, I. C. Prentice,
D. Ser¸ca, T. Hickler, A. Wolf, and B. Smith (2007), Process-based estimates of terrestrial
ecosystem isoprene emissions: incorporating the effects of a direct co¡sub¿2¡/sub¿-
isoprene interaction, Atmospheric Chemistry and Physics, 7 (1), 31–53, doi:10.5194/acp-
7-31-2007.
Avnery, S., D. L. Mauzerall, and A. M. Fiore (2013), Increasing global agricultural production
by reducing ozone damages via methane emission controls and ozone-resistant
cultivar selection, Global Change Biology, 19 (4), 1285–1299, doi:10.1111/gcb.12118.
Barket, D., J. Grossenbacher, J. Hurst, P. Shepson, K. Olszyna, T. Thornberry, M. Carroll,
J. Roberts, C. Stroud, J. Bottenheim, and T. Biesenthal (2004), A study of the
NOx dependence of isoprene oxidation, Journal of Geophysical Research: Atmospheres,
109 (D11), doi:10.1029/2003JD003965.
Collins, W. J., S. Sitch, and O. Boucher (2010), How vegetation impacts affect climate
metrics for ozone precursors, Journal of Geophysical Research: Atmospheres, 115 (D23),
doi:10.1029/2010JD014187.
Collins, W. J., N. Bellouin, M. Doutriaux-Boucher, N. Gedney, P. Halloran, T. Hinton,
J. Hughes, C. D. Jones, M. Joshi, S. Liddicoat, G. Martin, F. O’Connor, J. Rae, C. Senior,
S. Sitch, I. Totterdell, A. Wiltshire, and S. Woodward (2011), Development and
evaluation of an Earth-System model - HadGEM2, Geoscientific Model Development,
4 (4), 1051–1075, doi:10.5194/gmd-4-1051-2011.
Edwards, J. M., and A. Slingo (1996), Studies with a flexible new radiation code .1.
choosing a configuration for a large-scale model, Quarterly Journal Of The Royal Meteorological
Society, 122 (531), 689–719, doi:10.1002/qj.49712253107.
Essery, R. L. H., M. J. Best, R. A. Betts, P. M. Cox, and C. M. Taylor (2003), Explicit representation
of subgrid heterogeneity in a GCM land surface scheme, Journal Of Hydrometeorology,
4 (3), 530–543, doi:10.1175/1525-7541(2003)004¡0530:EROSHI¿2.0.CO;2.
Fiore, A. M., V. Naik, D. V. Spracklen, A. Steiner, N. Unger, M. Prather, D. Bergmann,
P. J. Cameron-Smith, I. Cionni, W. J. Collins, S. Dalsoren, V. Eyring, G. A. Folberth,
P. Ginoux, L. W. Horowitz, B. Josse, J.-F. Lamarque, I. A. MacKenzie, T. Nagashima,
F. M. O’Connor, M. Righi, S. T. Rumbold, D. T. Shindell, R. B. Skeie, K. Sudo,
S. Szopa, T. Takemura, and G. Zeng (2012), Global air quality and climate, Chemical
Society Reviews, 41 (19), 6663–6683, doi:10.1039/c2cs35095e.
Folberth, G., D. Hauglustaine, J. Lathiere, and F. Brocheton (2006), Interactive chemistry
in the Laboratoire de Meteorologie Dynamique general circulation model: model
descirption and impact analysis of biogenic hydrocarbons on tropsopheric chemistry,
Atmospheric Chemistry And Physics, 6, 2273–2319, doi:10.5194/acp-6-2273-2006.
Fu, Y., and A. P. K. Tai (2015), Impact of climate and land cover changes on tropospheric
ozone air quality and public health in east asia between 1980 and 2010, Atmospheric
Chemistry and Physics, 15 (17), 10,093–10,106, doi:10.5194/acp-15-10093-2015.
Ganzeveld, L., and J. Lelieveld (1995), Dry deposition parameterization in a chemistry
general circulation model and its influence on the distribution of reactive trace gases,
Journal of Geophysical Research - Atmospheres, 100, 20,999–21,012.
Gauss, M., G. Myhre, I. S. A. Isaksen, V. Grewe, G. Pitari, O. Wild, W. J. Collins, F. J.
Dentener, K. Ellingsen, L. K. Gohar, D. A. Hauglustaine, D. Iachetti, J. F. Lamarque,
E. Mancini, L. J. Mickley, M. J. Prather, J. A. Pyle, M. G. Sanderson, K. P. Shine, D. S.
Stevenson, K. Sudo, S. Szopa, and G. Zeng (2006), Radiative forcing since preindustrial
times due to ozone change in the troposphere and the lower stratosphere, Atmospheric
Chemistry And Physics, 6, 575–599, doi:10.5194/acp-6-575-2006.
Gedney, N., P. Cox, R. Betts, O. Boucher, C. Huntingford, and P. Stott (2006), Detection
of a direct carbon dioxide effect in continental river runoff records, Nature, 439, 835–838,
doi:10.1038/nature04504.
Giannakopoulos, C., T. P. Chipperfield, K. S. Law, and J. A. Pyle (1999), Validation
and intercomparison of wet and dry deposition schemes using Pb-210 in a global
three-dimensional off-line chemical transport model, Journal Of Geophysical ResearchAtmospheres,
104 (D19), 23,761–23,784, doi:10.1029/1999JD900392.
Guenther, A., P. Zimmerman, P. Harley, R. Monson, and R. Fall (1993), Isoprene
and monoterpene emission rate variability - model evaluations and sensitivity analyses,
Journal Of Geophysical Research-Atmospheres, 98 (D7), 12,609–12,617, doi:
10.1029/93JD00527.
Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P. Palmer, and C. Geron (2006), Estimates
of global terrestrial isoprene emissions using MEGAN (Model of Emissions of
Gases and Aerosols from Nature), Atmospheric Chemistry And Physics, 6, 3181–3210,
doi:10.5194/acp-6-3181-2006.
Hauglustaine, D. A., and G. P. Brasseur (2001), Evolution of tropospheric ozone under
anthropogenic activities and associated radiative forcing of climate, Journal Of Geophysical
Research-Atmospheres, 106 (D23), 32,337–32,360, doi:10.1029/2001JD900175.
Heald, C. L., M. J. Wilkinson, R. K. Monson, C. A. Alo, G. Wang, and A. Guenther (2009),
Response of isoprene emission to ambient co2 changes and implications for global budgets,
Global Change Biology, 15 (5), 1127–1140, doi:10.1111/j.1365-2486.2008.01802.x.
Hollaway, M. J., S. R. Arnold, A. J. Challinor, and L. D. Emberson (2012), Intercontinental
trans-boundary contributions to ozone-induced crop yield losses in the northern
hemisphere, Biogeosciences, 9 (1), 271–292, doi:10.5194/bg-9-271-2012.
Hurtt, G. C., L. P. Chini, S. Frolking, R. A. Betts, J. Feddema, G. Fischer, J. P. Fisk,
K. Hibbard, R. A. Houghton, A. Janetos, C. D. Jones, G. Kindermann, T. Kinoshita,
K. K. Goldewijk, K. Riahi, E. Shevliakova, S. Smith, E. Stehfest, A. Thomson, P. Thornton,
D. P. van Vuuren, and Y. P. Wang (2011), Harmonization of land-use scenarios
for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood
harvest, and resulting secondary lands, Climatic Change, 109 (1-2, SI), 117–161, doi:
10.1007/s10584-011-0153-2.
Jacob, D. J., and D. A. Winner (2009), Effect of climate change on air quality, Atmospheric
Environment, 43 (1), 51 – 63, doi:http://dx.doi.org/10.1016/j.atmosenv.2008.09.051.
Jones, C. D., J. K. Hughes, N. Bellouin, S. C. Hardiman, G. S. Jones, J. Knight, S. Liddicoat,
F. M. O’Connor, R. J. Andres, C. Bell, K.-O. Boo, A. Bozzo, N. Butchart,
P. Cadule, K. D. Corbin, M. Doutriaux-Boucher, P. Friedlingstein, J. Gornall, L. Gray,
P. R. Halloran, G. Hurtt, W. J. Ingram, J.-F. Lamarque, R. M. Law, M. Meinshausen,
S. Osprey, E. J. Palin, L. Parsons Chini, T. Raddatz, M. G. Sanderson, A. A. Sellar,
A. Schurer, P. Valdes, N. Wood, S. Woodward, M. Yoshioka, and M. Zerroukat
(2011), The HadGEM2-ES implementation of CMIP5 centennial simulations, Geoscientific
Model Development, 4 (3), 543–570, doi:10.5194/gmd-4-543-2011.
Klein Goldewijk, K., A. Beusen, and P. Janssen (2010), Long term dynamic modelling of
global population and built-up area in a spatially explicit way: HYDE 3.1, Holocene,
20, 565–573, doi:10.1177/0959683609356587.
Lamarque, J. F., P. Hess, L. Emmons, L. Buja, W. Washington, and C. Granier (2005),
Tropospheric ozone evolution between 1890 and 1990, Journal Of Geophysical ResearchAtmospheres,
110 (D8), D08,304, doi:10.1029/2004JD005537.
Lamarque, J. F., T. C. Bond, V. Eyring, C. Granier, A. Heil, Z. Klimont, D. Lee, C. Liousse,
A. Mieville, B. Owen, M. G. Schultz, D. Shindell, S. J. Smith, E. Stehfest,
J. Van Aardenne, O. R. Cooper, M. Kainuma, N. Mahowald, J. R. McConnell, V. Naik,
K. Riahi, and D. P. van Vuuren (2010), Historical (1850-2000) gridded anthropogenic
and biomass burning emissions of reactive gases and aerosols: methodology and application,
Atmospheric Chemistry And Physics, 10 (15), 7017–7039, doi:10.5194/acp-10-
7017-2010.
Lelieveld, J., T. Butler, J. Crowley, T. Dillon, H. Fischer, L. Ganzeveld, H. Harder,
M. Lawrence, M. Martinez, D. Taraborrelli, and J. Williams (2008), Atmospheric
oxidation capacity sustained by a tropical forest, Nature, 452, 737–740, doi:
10.1038/nature06870.
Lombardozzi, D., J. P. Sparks, and G. Bonan (2013), Integrating o3 influences on terrestrial
processes: photosynthetic and stomatal response data available for regional and
global modeling, Biogeosciences, 10 (11), 6815–6831, doi:10.5194/bg-10-6815-2013.
Lombardozzi, D., S. Levis, G. Bonan, P. G. Hess, and J. P. Sparks (2015), The Influence
of Chronic Ozone Exposure on Global Carbon and Water Cycles, Journal of Climate,
28 (1), 292–305, doi:10.1175/JCLI-D-14-00223.1.
Loveland, T., B. Reed, J. Brown, D. Ohlen, Z. Zhu, L. Yang, and J. Merchant (2000), Development
of a global land cover characteristics database and IGBP DISCover from
1km AVHRR data, International Journal of Remote Sensing, 21, 1303–1330, doi:
10.1080/014311600210191.
Mickley, L. J., D. J. Jacob, and D. Rind (2001), Uncertainty in preindustrial abundance
of tropospheric ozone: Implications for radiative forcing calculations, Journal Of Geophysical
Research-Atmospheres, 106 (D4), 3389–3399, doi:10.1029/2000JD900594.
Monson, R., and R. Fall (1989), Isoprene emission from Aspen leaves - influence of environment
and relation to photosynthesis and photorespiration, Plant Physiology, 90 (1),
267–274, doi:10.1104/pp.90.1.267.
Monson, R. K., N. Trahan, T. N. Rosenstiel, P. Veres, D. Moore, M. Wilkinson, R. J.
Norby, A. Volder, M. G. Tjoelker, D. D. Briske, D. F. Karnosky, and R. Fall (2007),
Isoprene emission from terrestrial ecosystems in response to global change: minding
the gap between models and observations, Philosophical Transactions Of The Royal
Society A-Mathematical Physical And Engineering Sciences, 365 (1856), 1677–1695, doi:
10.1098/rsta.2007.2038.
Moxim, W. J., H. Levy, and P. S. Kasibhatla (1996), Simulated global tropospheric
PAN: Its transport and impact on nox, Journal Of Geophysical Research-Atmospheres,
101 (D7), 12,621–12,638, doi:10.1029/96JD00338.
Myhre, G., D. Shindell, F. M. Breon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J. F.
Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura,
and H. Zhang (2013), Anthropogenic and Natural Radiative Forcing, in Climate Change
2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by T. Stocker,
D. Qin, G. K. Plattner, M. Tignor, S. Allen, J. Boschnung, A. Nauels, Y. Xia, V. Bex,
and P. Midgley, Cambridge University Press, Cambridge, United Kingdom and New
York, NY, USA.
Niinemets, U., and Z. Sun (2015), How light, temperature, and measurement and growth
[CO2] interactively control isoprene emission in hybrid aspen, Journal of Experimental
Botany, 66 (3), 841–851, doi:10.1093/jxb/eru443.
Niinemets, U., J. Tenhunen, P. Harley, and R. Steinbrecher (1999), A model of isoprene
emission based on energetic requirements for isoprene synthesis and leaf photosynthetic
properties for Liquidambar and Quercus, Plant, Cell and Environment, 22, 1319–1335,
doi:10.1046/j.1365-3040.1999.00505.x.
Niinemets, U., A. Arneth, U. Kuhn, R. Monson, and M. Penuelas, J. ad Staudt (2010a),
The emission factor of volatile isoprenoids: stress, acclimation, and developmental responses,
Biogeosciences, 7 (7), 2203–2223, doi:10.5194/bg-7-2203-2010.
Niinemets, U., R. K. Monson, A. Arneth, P. Ciccioli, J. Kesselmeier, U. Kuhn, S. M.
Noe, J. Penuelas, and M. Staudt (2010b), The leaf-level emission factor of volatile
isoprenoids: caveats, model algorithms, response shapes and scaling, Biogeosciences,
7 (6), 1809–1832, doi:10.5194/bg-7-1809-2010.
O’Connor, F. M., C. E. Johnson, O. Morgenstern, N. L. Abraham, P. Braesicke, M. Dalvi,
G. A. Folberth, M. G. Sanderson, P. J. Telford, A. Voulgarakis, P. J. Young, G. Zeng,
W. J. Collins, and J. A. Pyle (2014), Evaluation of the new ukca climate-composition
model part 2: The troposphere, Geoscientific Model Development, 7 (1), 41–91, doi:
10.5194/gmd-7-41-2014.
Pacifico, F., S. Harrison, C. Jones, and S. Sitch (2009), Isoprene emissions
and climate, Atmospheric Environment, 43 (39), 6121–6135, doi:
http://dx.doi.org/10.1016/j.atmosenv.2009.09.002.
Pacifico, F., S. P. Harrison, C. D. Jones, A. Arneth, S. Sitch, G. P. Weedon, M. P. Barkley,
P. I. Palmer, D. Ser¸ca, M. Potosnak, T.-M. Fu, A. Goldstein, J. Bai, and G. Schurgers
(2011), Evaluation of a photosynthesis-based biogenic isoprene emission scheme in
JULES and simulation of isoprene emissions under present-day climate conditions, Atmospheric
Chemistry and Physics, 11 (9), 4371–4389, doi:10.5194/acp-11-4371-2011.
Pacifico, F., G. A. Folberth, S. Sitch, J. M. Haywood, L. V. Rizzo, F. F. Malavelle,
and P. Artaxo (2015), Biomass burning related ozone damage on vegetation over the
amazon forest: a model sensitivity study, Atmospheric Chemistry and Physics, 15 (5),
2791–2804, doi:10.5194/acp-15-2791-2015.
Pacifico, F., G. A. Folberth, C. D. Jones, S. P. Harrison, and W. J. Collins (2012), Sensitivity
of biogenic isoprene emissions to past, present, and future environmental conditions
and implications for atmospheric chemistry, Journal of Geophysical ResearchAtmospheres,
117, doi:10.1029/2012JD018276.
Parrella, J. P., D. J. Jacob, Q. Liang, Y. Zhang, L. J. Mickley, B. Miller, M. J. Evans,
X. Yang, J. A. Pyle, N. Theys, and M. Van Roozendael (2012), Tropospheric bromine
chemistry: implications for present and pre-industrial ozone and mercury, Atmospheric
Chemistry And Physics, 12 (15), 6723–6740, doi:10.5194/acp-12-6723-2012.
Pegoraro, E., A. Rey, E. G. Bobich, G. Barron-Gafford, K. A. Grieve, Y. Malhi, and
R. Murthy (2004), Effect of elevated co2 concentration and vapour pressure deficit on
isoprene emission from leaves of Populus deltoides during drought, Functional Plant
Biology, 31 (12), 1137–1147, doi:10.1071/FP04142.
Poschl, U., R. Von Kuhlmann, N. Poisson, and P. Crutzen (2000), Development and
intercomparison of condensed isoprene oxidation mechanisms for global atmospheric
modelling, Journal of Atmospheric Chemistry, 37, 29–52, doi:10.1023/A:1006391009798.
Possell, M., C. N. Hewitt, and D. J. Beerling (2005), The effects of glacial atmospheric
co2 concentrations and climate on isoprene emissions by vascular plants, Global Change
Biology, 11 (1), 60–69.
Price, C., and D. Rind (1993), What determines the cloud -to-ground lightning fraction in
thunderstorms?, Geophysical Research Letters, 20 (6), 463–466, doi:10.1029/93GL00226.
Ramankutty, N., and J. Foley (1999), Estimating historical changes in land cover: North
American croplands from 1850 to 1992, Global Ecology and Biogeography, 8, 381–396,
doi:10.1046/j.1365-2699.1999.00141.x.
Rap, A., N. A. D. Richards, P. M. Forster, S. A. Monks, S. R. Arnold, and M. P. Chipper-
field (2015), Satellite constraint on the tropospheric ozone radiative effect, Geophysical
Research Letters, 42 (12), 5074–5081, doi:10.1002/2015GL064037.
Richards, J. (1990), Land transformation, in The Earth as transformed by human action,
edited by B. Turner, R. Clark, W.C. Kates, J. Richards, J. Matthews, and W. Meyer,
pp. 163–178, Cambridge University Press, Cambridge, United Kingdom and New York,
NY, USA.
Riese, M., F. Ploeger, A. Rap, B. Vogel, P. Konopka, M. Dameris, and P. Forster (2012),
Impact of uncertainties in atmospheric mixing on simulated utls composition and related
radiative effects, Journal of Geophysical Research: Atmospheres, 117 (D16), n/a–n/a,
doi:10.1029/2012JD017751, d16305.
Rossow, W. B., and R. A. Schiffer (1999), Advances in understanding clouds from ISCCP,
Bulletin Of The American Meteorological Society, 80 (11), 2261–2287, doi:10.1175/1520-
0477(1999)080¡2261:AIUCFI¿2.0.CO;2.
Ryerson, T., M. Trainer, J. Holloway, D. Parrish, L. Huey, D. Sueper, G. Frost,
S. Donnelly, S. Schauffler, E. Atlas, W. Kuster, P. Goldan, G. Hubler, J. Meagher,
and F. Fehsenfeld (2001), Observations of ozone formation in power plant plumes
and implications for ozone control strategies, SCIENCE, 292 (5517), 719–723, doi:
10.1126/science.1058113.
Sanderson, M., W. Collins, C. Johnson, and R. Derwent (2006), Present and future acid
deposition to ecosystems: The effect of climate change, Atmospheric Environment, 40,
1275–1283, doi:http://dx.doi.org/10.1016/j.atmosenv.2005.10.031.
Shindell, D. T., G. Faluvegi, and N. Bell (2003), Preindustrial-to-present-day radiative
forcing by tropospheric ozone from improved simulations with the giss chemistry-climate
gcm, Atmospheric Chemistry and Physics, 3 (5), 1675–1702, doi:10.5194/acp-3-1675-
2003.
Sillman, S. (2000), Ozone production efficiency and loss of NOx in power plant plumes:
Photochemical model and interpretation of measurements in Tennessee, Journal of Geophysical
Research-Atmospheres, 105 (D7), 9189–9202, doi:10.1029/1999JD901014.
Singh, H. B. (1987), Reactive nitrogen in the troposphere, Environmental Science &
Technology, 21 (4), 320–327, doi:10.1021/es00158a001.
Sitch, S., P. M. Cox, W. J. Collins, and C. Huntingford (2007), Indirect radiative forcing
of climate change through ozone effects on the land-carbon sink, Nature, 448 (7155),
791–U4, doi:10.1038/nature06059.
Skeie, R. B., T. K. Berntsen, G. Myhre, K. Tanaka, M. M. Kvalev˚ag, and C. R. Hoyle
(2011), Anthropogenic radiative forcing time series from pre-industrial times until 2010,
Atmospheric Chemistry and Physics, 11 (22), 11,827–11,857, doi:10.5194/acp-11-11827-2011.
Smith, R., D. Fowler, M. Sutton, C. Flechard, and F. Coyle (2000), Regional estimation
of pollutant gas dry deposition in the UK: model description, sensitivity
analysis and outputs, Atmospheric Environment, 34 (22), 3757–3777, doi:
http://dx.doi.org/10.1016/S1352-2310(99)00517-8.
Stevenson, D. S., P. J. Young, V. Naik, J.-F. Lamarque, D. T. Shindell, A. Voulgarakis,
R. B. Skeie, S. B. Dalsoren, G. Myhre, T. K. Berntsen, G. A. Folberth, S. T. Rumbold,
W. J. Collins, I. A. MacKenzie, R. M. Doherty, G. Zeng, T. P. C. van Noije, A. Strunk,
D. Bergmann, P. Cameron-Smith, D. A. Plummer, S. A. Strode, L. Horowitz, Y. H.
Lee, S. Szopa, K. Sudo, T. Nagashima, B. Josse, I. Cionni, M. Righi, V. Eyring, A. Conley,
K. W. Bowman, O. Wild, and A. Archibald (2013), Tropospheric ozone changes,
radiative forcing and attribution to emissions in the atmospheric chemistry and climate
model intercomparison project (accmip), Atmospheric Chemistry and Physics, 13 (6),
3063–3085, doi:10.5194/acp-13-3063-2013.
Strada, S., and N. Unger (2016), Potential sensitivity of photosynthesis and isoprene emission
to direct radiative effects of atmospheric aerosol pollution, Atmospheric Chemistry
and Physics, 16 (7), 4213–4234, doi:10.5194/acp-16-4213-2016.
Tai, A. P. K., M. V. Martin, and C. L. Heald (2014), Threat to future global food security
from climate change and ozone air pollution, Nature Climate Change, 4 (9), 817–821,
doi:10.1038/NCLIMATE2317.
Turner, I., R. Moss, and D. Skole (1993), Relating land use and global land cover change.
a proposal for an IGBP-HDP Core Project, IGBP Report no. 24, HDP Report no. 5.
The International Geosphere-Biosphere Programme: A study of global change and the Human Dimensions of Global Environmental Change Programme, Stockholm.
Unger, N. (2014), Human land-use-driven reduction of forest volatiles cools global climate,
Nature climate change, 4 (10), 907–910, doi:10.1038/nclimate2347.
ValMartin, M., C. L. Heald, and S. R. Arnold (2014), Coupling dry deposition to vegetation
phenology in the community earth system model: Implications for the simulation of
surface o3, Geophysical Research Letters, 41 (8), 2988–2996, doi:10.1002/2014GL059651.
Van Dingenen, R., F. J. Dentener, F. Raes, M. C. Krol, L. Emberson, and J. Cofala
(2009), The global impact of ozone on agricultural crop yields under current
and future air quality legislation, Atmospheric Environment, 43 (3), 604–618, doi:
http://dx.doi.org/10.1016/j.atmosenv.2008.10.033.
Wang, Y., J. A. Logan, and D. J. Jacob (1998), Global simulation of tropospheric O3-
NOx-hydrocarbon chemistry: 2. model evaluation and global ozone budget, Journal of
Geophysical Research: Atmospheres, 103 (D9), 10,727–10,755, doi:10.1029/98JD00157.
Wang, Y. H., and D. J. Jacob (1998), Anthropogenic forcing on tropospheric ozone and
OH since preindustrial times, Journal Of Geophysical Research-Atmospheres, 103 (D23),
31,123–31,135, doi:10.1029/1998JD100004.
Wesely, M. (1989), Parameterization of Surface Resistances to Gaseous Dry Deposition
in Regional Scale Numerical Models, Atmospheric Environment, 23 (6), 1293–1304, doi:
10.1016/0004-6981(89)90153-4.
Wilkinson, M. J., R. K. Monson, N. Trahan, S. Lee, E. Brown, R. B. Jackson, H. W.
Polley, P. A. Fay, and R. Fall (2009), Leaf isoprene emission rate as a function
of atmospheric CO2 concentration, Global Change Biology, 15 (5), 1189–1200, doi:
10.1111/j.1365-2486.2008.01803.x.
Worden, H. M., K. W. Bowman, S. S. Kulawik, and A. M. Aghedo (2011), Sensitivity of
outgoing longwave radiative flux to the global vertical distribution of ozone characterized
by instantaneous radiative kernels from aura-tes, Journal of Geophysical Research:
Atmospheres, 116 (D14), n/a–n/a, doi:10.1029/2010JD015101, d14115.
Wu, S., L. J. Mickley, J. O. Kaplan, and D. J. Jacob (2012), Impacts of changes in land
use and land cover on atmospheric chemistry and air quality over the 21st century,
Atmospheric Chemistry and Physics, 12 (3), 1597–1609, doi:10.5194/acp-12-1597-2012.
Young, P. J., A. Arneth, G. Schurgers, G. Zeng, and J. A. Pyle (2009), The CO2 inhibition
of terrestrial isoprene emission significantly affects future ozone projections,
Atmospheric Chemistry and Physics, 9 (8), 2793–2803, doi:10.5194/acp-9-2793-2009.
Young, P. J., A. T. Archibald, K. W. Bowman, J.-F. Lamarque, V. Naik, D. S. Stevenson,
S. Tilmes, A. Voulgarakis, O. Wild, D. Bergmann, P. Cameron-Smith, I. Cionni,
W. J. Collins, S. B. Dalsøren, R. M. Doherty, V. Eyring, G. Faluvegi, L. W. Horowitz,
B. Josse, Y. H. Lee, I. A. MacKenzie, T. Nagashima, D. A. Plummer, M. Righi, S. T.
Rumbold, R. B. Skeie, D. T. Shindell, S. A. Strode, K. Sudo, S. Szopa, and G. Zeng
(2013), Pre-industrial to end 21st century projections of tropospheric ozone from the
atmospheric chemistry and climate model intercomparison project (ACCMIP), Atmospheric
Chemistry and Physics, 13 (4), 2063–2090, doi:10.5194/acp-13-2063-2013.
Yue, X., and N. Unger (2014), Ozone vegetation damage effects on gross primary productivity
in the united states, Atmospheric Chemistry and Physics, 14 (17), 9137–9153,
doi:10.5194/acp-14-9137-2014. University Staff: Request a correction | Centaur Editors: Update this record |