Accessibility navigation

Scientific challenges of convective-scale numerical weather prediction

Yano, J.-I., Ziemiański, M. Z., Cullen, M., Termonia, P., Onvlee, J., Bengtsson, L., Carrassi, A. ORCID:, Davy, R., Deluca, A., Gray, S. ORCID:, Homar, V., Köhler, M., Krichak, S., Michaelides, S., Phillips, V. T. J., Soares, P. M. M. and Wyszogrodzki, A. A. (2018) Scientific challenges of convective-scale numerical weather prediction. Bulletin of the American Meteorological Society, 99 (4). pp. 699-710. ISSN 1520-0477

Text - Accepted Version
· Please see our End User Agreement before downloading.


It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1175/bams-d-17-0125.1


Numerical weather prediction (NWP) models are increasing in resolution and becoming capable of explicitly representing individual convective storms. Is this increase in resolution leading to better forecasts? Unfortunately, we do not have sufficient theoretical understanding about this weather regime to make full use of these NWPs. After extensive efforts over the course of a decade, convective–scale weather forecasts with horizontal grid spacings of 1–5 km are now operational at national weather services around the world, accompanied by ensemble prediction systems (EPSs). However, though already operational, the capacity of forecasts for this scale is still to be fully exploited by overcoming the fundamental difficulty in prediction: the fully three–dimensional and turbulent nature of the atmosphere. The prediction of this scale is totally different from that of the synoptic scale (103 km) with slowly–evolving semi–geostrophic dynamics and relatively long predictability on the order of a few days. Even theoretically, very little is understood about the convective scale compared to our extensive knowledge of the synoptic-scale weather regime as a partial–differential equation system, as well as in terms of the fluid mechanics, predictability, uncertainties, and stochasticity. Furthermore, there is a requirement for a drastic modification of data assimilation methodologies, physics (e.g., microphysics), parameterizations, as well as the numerics for use at the convective scale. We need to focus on more fundamental theoretical issues: the Liouville principle and Bayesian probability for probabilistic forecasts; and more fundamental turbulence research to provide robust numerics for the full variety of turbulent flows. The present essay reviews those basic theoretical challenges as comprehensibly as possible. The breadth of the problems that we face is a challenge in itself: an attempt to reduce these into a single critical agenda should be avoided.

Item Type:Article
Divisions:Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:73687
Uncontrolled Keywords:Atmospheric Science
Publisher:American Meteorological Society


Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation