Number of items: 61.
Article
Pasmans, I. ORCID: https://orcid.org/0000-0001-5076-5421, Chen, Y. ORCID: https://orcid.org/0000-0002-2319-6937, Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600 and Jones, C. K. R. T.
(2024)
Tailoring data assimilation to discontinuous Galerkin models.
Quarterly Journal of the Royal Meteorological Society.
ISSN 0035-9009
doi: https://doi.org/10.1002/qj.4737
Chen, Y. ORCID: https://orcid.org/0000-0002-2319-6937, Smith, P. ORCID: https://orcid.org/0000-0003-4570-4127, Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600, Pasmans, I. ORCID: https://orcid.org/0000-0001-5076-5421, Bertino, L., Bocquet, M., Sebastian Finn, T., Rampal, P. and Dansereau, V.
(2024)
Multivariate state and parameter estimation with data assimilation applied to sea-ice models using a Maxwell elasto-brittle rheology.
The Cryosphere, 18 (5).
pp. 2381-2406.
ISSN 1994-0424
doi: https://doi.org/10.5194/tc-18-2381-2024
Higgs, I., Skákala, J., Bannister, R. ORCID: https://orcid.org/0000-0002-6846-8297, Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600 and Ciavatta, S.
(2024)
Investigating ecosystem connections in the shelf sea environment using complex networks.
Biogeosciences, 21 (3).
pp. 731-746.
ISSN 1726-4189
doi: https://doi.org/10.5194/bg-21-731-2024
Finn, T. S., Durand, C., Farchi, A., Bocquet, M., Chen, Y. ORCID: https://orcid.org/0000-0002-2319-6937, Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600 and Dansereau, V.
(2023)
Deep learning subgrid-scale parametrisations for short-term forecasting of sea-ice dynamics with a Maxwell elasto-brittle rheology.
The Cryosphere, 17 (7).
pp. 2965-2991.
ISSN 1994-0424
doi: https://doi.org/10.5194/tc-17-2965-2023
Cheng, S., Quilodrán-Casas, C., Ouala, S., Farchi, A., Liu, C., Tandeo, P., Fablet, R., Lucor, D., Iooss, B., Brajard, J., Xiao, D., Janjic, T., Ding, W., Guo, Y., Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600, Bocquet, M. and Arcucci, R.
(2023)
Machine learning with data assimilation and uncertainty quantification for dynamical systems: a review.
IEEE/CAA Journal of Automatica Sinica, 10 (6).
pp. 1361-1387.
ISSN 2329-9266
doi: https://doi.org/10.1109/JAS.2023.123537
Cheng, S. ORCID: https://orcid.org/0000-0002-7304-2442, Chen, Y. ORCID: https://orcid.org/0000-0002-2319-6937, Aydoğdu, A., Bertino, L., Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600, Rampal, P. and Jones, C. K. R. T.
(2023)
Arctic sea ice data assimilation combining an ensemble Kalman filter with a novel Lagrangian sea ice model for the winter 2019–2020.
The Cryosphere, 17 (4).
pp. 1735-1754.
ISSN 1994-0424
doi: https://doi.org/10.5194/tc-17-1735-2023
Ayers, D. ORCID: https://orcid.org/0000-0002-5667-8174, Lau, J., Amezcua, J. ORCID: https://orcid.org/0000-0002-4952-8354, Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600 and Ojha, V. ORCID: https://orcid.org/0000-0002-9256-1192
(2023)
Supervised machine learning to estimate instabilities in chaotic systems: estimation of local Lyapunov exponents.
Quarterly Journal of the Royal Meteorological Society, 149 (753).
pp. 1236-1262.
ISSN 1477-870X
doi: https://doi.org/10.1002/qj.4450
Baguis, P., Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600, Roulin, E., Vannitsem, S., Modanesi, S., Lievens, H., Bechtold, M. ORCID: https://orcid.org/0000-0002-8042-9792 and De Lannoy, G. ORCID: https://orcid.org/0000-0002-6743-7122
(2022)
Assimilation of backscatter observations into a hydrological model: a case study in Belgium using ASCAT data.
Remote Sensing, 14 (22).
5740.
ISSN 2072-4292
doi: https://doi.org/10.3390/rs14225740
De Lannoy, G. J. M., Bechtold, M., Albergel, C., Brocca, L., Calvet, J.-C., Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600, Crow, W. T., de Rosnay, P., Durand, M., Forman, B., Geppert, G., Girotto, M., Hendricks Franssen, H.-J., Jonas, T., Kumar, S., Lievens, H., Lu, Y., Massari, C., Pauwels, V. R. N., Reichle, R. H. and Steele-Dunne, S.
(2022)
Perspective on satellite-based land data assimilation to estimate water cycle components in an era of advanced data availability and model sophistication.
Frontiers in Water, 4.
ISSN 2624-9375
doi: https://doi.org/10.3389/frwa.2022.981745
Scheffler, G. ORCID: https://orcid.org/0000-0002-6474-1372, Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600, Ruiz, J. and Pulido, M.
(2022)
Dynamical effects of inflation in ensemble‐based data assimilation under the presence of model error.
Quarterly Journal of the Royal Meteorological Society, 148 (746).
pp. 2368-2383.
ISSN 1477-870X
doi: https://doi.org/10.1002/qj.4307
Schevenhoven, F. and Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600
(2022)
Training a supermodel with noisy and sparse observations: a case study with CPT and the synch rule on SPEEDO – v.1.
Geoscientific Model Development, 15 (9).
pp. 3831-3844.
ISSN 1991-9603
doi: https://doi.org/10.5194/gmd-15-3831-2022
Chen, Y. ORCID: https://orcid.org/0000-0002-2319-6937, Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600 and Lucarini, V. ORCID: https://orcid.org/0000-0001-9392-1471
(2021)
Inferring the instability of a dynamical system from the skill of data assimilation exercises.
Nonlinear Processes in Geophysics, 28 (4).
pp. 633-649.
ISSN 1023-5809
doi: https://doi.org/10.5194/npg-28-633-2021
Evensen, G., Amezcua, J., Bocquet, M., Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600, Farchi, A., Fowler, A. ORCID: https://orcid.org/0000-0003-3650-3948, Houtekamer, P. L., Jones, C. K., de Moraes, R. J., Pulido, M., Sampson, C. and Vossepoel, F. C.
(2021)
An international initiative of predicting the Sars-Cov-2 pandemic using ensemble data assimilation.
Foundations of Data Science, 3 (3).
pp. 413-477.
ISSN 2639-8001
doi: https://doi.org/10.3934/fods.2021001
Brajard, J. ORCID: https://orcid.org/0000-0003-0634-1482, Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600, Bocquet, M. and Bertino, L.
(2021)
Combining data assimilation and machine learning to infer unresolved scale parametrization.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379 (2194).
20200086.
ISSN 1364-503X
doi: https://doi.org/10.1098/rsta.2020.0086
Bonavita, M., Arcucci, R., Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600, Dueben, P., Geer, A. J., Le Saux, B., Longépé, N., Mathieu, P.-P. and Raynaud, L.
(2021)
Machine learning for earth system observation and prediction.
Bulletin of the American Meteorological Society, 102 (4).
E710-E716.
ISSN 1520-0477
doi: https://doi.org/10.1175/BAMS-D-20-0307.1
Sampson, C. ORCID: https://orcid.org/0000-0002-4275-4877, Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600, Aydogdu, A. ORCID: https://orcid.org/0000-0002-1557-7502 and Jones, C. K.R.T.
(2021)
Ensemble Kalman Filter for non‐conservative moving mesh solvers with a joint physics and mesh location update.
Quarterly Journal of the Royal Meteorological Society, 147 (736).
pp. 1539-1567.
ISSN 0035-9009
doi: https://doi.org/10.1002/qj.3980
Cheng, S. ORCID: https://orcid.org/0000-0002-7304-2442, Aydoğdu, A. ORCID: https://orcid.org/0000-0002-1557-7502, Rampal, P., Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600 and Bertino, L.
(2020)
Probabilistic forecasts of sea ice trajectories in the arctic: impact of uncertainties in surface wind and ice cohesion.
Oceans, 1 (4).
pp. 326-342.
ISSN 2673-1924
doi: https://doi.org/10.3390/oceans1040022
Tandeo, P., Ailliot, P., Bocquet, M., Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600, Miyoshi, T., Pulido, M. and Zhen, Y.
(2020)
A review of innovation-based methods to jointly estimate model and observation error covariance matrices in ensemble data assimilation.
Monthly Weather Review, 148 (10).
ISSN 0027-0644
doi: https://doi.org/10.1175/MWR-D-19-0240.1
Brajard, J., Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600, Bocquet, M. and Bertino, L.
(2020)
Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: a case study with the Lorenz 96 model.
Journal of Computational Science, 44.
101171.
ISSN 2153-4136
doi: https://doi.org/10.1016/j.jocs.2020.101171
Grudzien, C., Bocquet, M. and Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600
(2020)
On the numerical integration of the Lorenz-96 model, with scalar additive noise, for benchmark twin experiments.
Geoscientific Model Development, 13 (4).
pp. 1903-1924.
ISSN 1991-9603
doi: https://doi.org/10.5194/gmd-13-1903-2020
Bocquet, M., Brajard, J., Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600 and Bertino, L.
(2020)
Bayesian inference of chaotic dynamics by merging data assimilation, machine learning and expectation-maximization.
Foundations of Data Science, 2 (1).
pp. 55-80.
ISSN 2639-8001
doi: https://doi.org/10.3934/fods.2020004
Tondeur, M., Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600, Vannitsem, S. and Bocquet, M.
(2020)
On temporal scale separation in coupled data assimilation with the ensemble Kalman filter.
Journal of Statistical Physics, 179 (5-6).
pp. 1161-1185.
ISSN 0022-4715
doi: https://doi.org/10.1007/s10955-020-02525-z
Schevenhoven, F., Selten, F., Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600 and Keenlyside, N.
(2019)
Improving weather and climate predictions by training of supermodels.
Earth System Dynamics, 10 (4).
pp. 789-807.
ISSN 2190-4987
doi: https://doi.org/10.5194/esd-10-789-2019
Aydoğdu, A., Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600, Guider, C. T., Jones, C. K. R. T. and Rampal, P.
(2019)
Data assimilation using adaptive, non-conservative, moving mesh models.
Nonlinear Processes in Geophysics, 26 (3).
pp. 175-193.
ISSN 1607-7946
doi: https://doi.org/10.5194/npg-26-175-2019
Bocquet, M., Brajard, J., Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600 and Bertino, L.
(2019)
Data assimilation as a learning tool to infer ordinary differential equation representations of dynamical models.
Nonlinear Processes in Geophysics, 26 (3).
pp. 143-162.
ISSN 1607-7946
doi: https://doi.org/10.5194/npg-26-143-2019
Metref, S., Hannart, A., Ruiz, J., Bocquet, M., Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600 and Ghil, M.
(2019)
Estimating model evidence using ensemble‐based data assimilation with localization – the model selection problem.
Quarterly Journal of the Royal Meteorological Society, 145 (721).
pp. 1571-1588.
ISSN 0035-9009
doi: https://doi.org/10.1002/qj.3513
Raanes, P. N., Bocquet, M. and Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600
(2019)
Adaptive covariance inflation in the ensemble Kalman filter by Gaussian scale mixtures.
Quarterly Journal of the Royal Meteorological Society, 145 (718).
pp. 53-75.
ISSN 0035-9009
doi: https://doi.org/10.1002/qj.3386
Grudzien, C., Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600 and Bocquet, M.
(2018)
Asymptotic forecast uncertainty and the unstable subspace in the presence of additive model error.
SIAM/ASA Journal on Uncertainty Quantification, 6 (4).
pp. 1335-1363.
ISSN 2166-2525
doi: https://doi.org/10.1137/17M114073X
Grudzien, C., Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600 and Bocquet, M.
(2018)
Chaotic dynamics and the role of covariance inflation for reduced rank Kalman filters with model error.
Nonlinear Processes in Geophysics, 25 (3).
pp. 633-648.
ISSN 1023-5809
doi: https://doi.org/10.5194/npg-25-633-2018
Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600, Bocquet, M., Bertino, L. and Evensen, G.
(2018)
Data assimilation in the geosciences: an overview of methods, issues, and perspectives.
Wiley Interdisciplinary Reviews: Climate Change, 9 (5).
e535.
ISSN 1757-7799
doi: https://doi.org/10.1002/wcc.535
Yano, J.-I., Ziemiański, M. Z., Cullen, M., Termonia, P., Onvlee, J., Bengtsson, L., Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600, Davy, R., Deluca, A., Gray, S. ORCID: https://orcid.org/0000-0001-8658-362X, Homar, V., Köhler, M., Krichak, S., Michaelides, S., Phillips, V. T. J., Soares, P. M. M. and Wyszogrodzki, A. A.
(2018)
Scientific challenges of convective-scale numerical weather prediction.
Bulletin of the American Meteorological Society, 99 (4).
pp. 699-710.
ISSN 1520-0477
doi: https://doi.org/10.1175/bams-d-17-0125.1
Pulido, M., Tandeo, P., Bocquet, M., Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600 and Lucini, M.
(2018)
Stochastic parameterization identification using ensemble Kalman filtering combined with maximum likelihood methods.
Tellus A: Dynamic Meteorology and Oceanography, 70 (1).
pp. 1-17.
ISSN 1600-0870
doi: https://doi.org/10.1080/16000870.2018.1442099
Rabatel, M., Rampal, P., Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600, Bertino, L. and Jones, C. K. R. T.
(2018)
Impact of rheology on probabilistic forecasts of sea ice trajectories: application for search and rescue operations in the Arctic.
The Cryosphere, 12 (3).
pp. 935-953.
ISSN 1994-0424
doi: https://doi.org/10.5194/tc-12-935-2018
Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600, Bocquet, M., Hannart, A. and Ghil, M.
(2017)
Estimating model evidence using data assimilation.
Quarterly Journal of the Royal Meteorological Society, 143 (703).
pp. 866-880.
ISSN 1477-870X
doi: https://doi.org/10.1002/qj.2972
Bocquet, M., Gurumoorthy, K. S., Apte, A., Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600, Grudzien, C. and Jones, C. K. R. T.
(2017)
Degenerate Kalman filter error covariances and their convergence onto the unstable subspace.
SIAM/ASA Journal on Uncertainty Quantification, 5 (1).
pp. 304-333.
ISSN 2166-2525
doi: https://doi.org/10.1137/16M1068712
Bocquet, M. and Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600
(2017)
Four-dimensional ensemble variational data assimilation and the unstable subspace.
Tellus A: Dynamic Meteorology and Oceanography, 69 (1).
1304504.
ISSN 1600-0870
doi: https://doi.org/10.1080/16000870.2017.1304504
Gurumoorthy, K. S., Grudzien, C., Apte, A., Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600 and Jones, C. K. R. T.
(2017)
Rank deficiency of Kalman error covariance matrices in linear time-varying system with deterministic evolution.
SIAM Journal on Control and Optimization, 55 (2).
pp. 741-759.
ISSN 0363-0129
doi: https://doi.org/10.1137/15M1025839
Pazó, D., Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600 and López, J. M.
(2016)
Data assimilation by delay-coordinate nudging.
Quarterly Journal of the Royal Meteorological Society, 142 (696).
pp. 1290-1299.
ISSN 0035-9009
doi: https://doi.org/10.1002/qj.2732
Hannart, A., Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600, Bocquet, M., Ghil, M., Naveau, P., Pulido, M., Ruiz, J. and Tandeo, P.
(2016)
DADA: data assimilation for the detection and attribution of weather and climate-related events.
Climatic Change, 136 (2).
pp. 155-174.
ISSN 0165-0009
doi: https://doi.org/10.1007/s10584-016-1595-3
Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600, Guemas, V., Doblas-Reyes, F. J., Volpi, D. and Asif, M.
(2016)
Sources of skill in near-term climate prediction: generating initial conditions.
Climate Dynamics, 47 (12).
pp. 3693-3712.
ISSN 0930-7575
doi: https://doi.org/10.1007/s00382-016-3036-4
Weber, R. J. T., Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600 and Doblas-Reyes, F. J.
(2015)
Linking the anomaly initialization approach to the mapping paradigm: a proof-of-concept study.
Monthly Weather Review, 143 (11).
pp. 4695-4713.
ISSN 0027-0644
doi: https://doi.org/10.1175/MWR-D-14-00398.1
Mitchell, L. and Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600
(2015)
Accounting for model error due to unresolved scales within ensemble Kalman filtering.
Quarterly Journal of the Royal Meteorological Society, 141 (689).
pp. 1417-1428.
ISSN 1477-870X
doi: https://doi.org/10.1002/qj.2451
Raanes, P. N., Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600 and Bertino, L.
(2015)
Extending the square root method to account for additive forecast noise in ensemble methods.
Monthly Weather Review, 143 (10).
pp. 3857-3873.
ISSN 0027-0644
doi: https://doi.org/10.1175/MWR-D-14-00375.1
Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600, Weber, R. J. T., Gumeas, V., Doblas-Reyes, F. J., Asif, M. and Volpi, D.
(2014)
Full-field and anomaly initialization using a low-order climate model: a comparison and proposals for advanced formulations.
Nonlinear Processes in Geophysics, 21 (2).
pp. 521-537.
ISSN 1023-5809
doi: https://doi.org/10.5194/npg-21-521-2014
Palatella, L., Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600 and Trevisan, A.
(2013)
Lyapunov vectors and assimilation in the unstable subspace: theory and applications.
Journal of Physics A: Mathematical and Theoretical, 46 (25).
254020.
ISSN 1751-8113
doi: https://doi.org/10.1088/1751-8113/46/25/254020
Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600, Hamdi, R., Termonia, P. and Vannitsem, S.
(2012)
Short time augmented extended Kalman filter for soil analysis: a feasibility study.
Atmospheric Science Letters, 13 (4).
pp. 268-274.
ISSN 1530-261X
doi: https://doi.org/10.1002/asl.394
Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600 and Vannitsem, S.
(2011)
Treatment of the error due to unresolved scales in sequential data assimilation.
International Journal of Bifurcation and Chaos, 21 (12).
pp. 3619-3626.
ISSN 1793-6551
doi: https://doi.org/10.1142/S0218127411030775
Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600 and Vannitsem, S.
(2011)
State and parameter estimation with the extended Kalman filter: an alternative formulation of the model error dynamics.
Quarterly Journal of the Royal Meteorological Society, 137 (655).
pp. 435-451.
ISSN 1477-870X
doi: https://doi.org/10.1002/qj.762
Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600 and Vannitsem, S.
(2010)
Accounting for model error in variational data assimilation: a deterministic formulation.
Monthly Weather Review, 138 (9).
pp. 3369-3386.
ISSN 0027-0644
doi: https://doi.org/10.1175/2010MWR3192.1
Porcu, F. and Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600
(2009)
Toward an estimation of the relationship between cyclonic structures and damages at the ground in Europe.
Natural Hazards and Earth System Sciences, 9 (3).
pp. 823-829.
ISSN 1561-8633
doi: https://doi.org/10.5194/nhess-9-823-2009
Yang, S.-C., Corazza, M., Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600, Kalnay, E. and Miyoshi, T.
(2009)
Comparison of local ensemble transform Kalman filter, 3DVAR, and 4DVAR in a quasigeostrophic model.
Monthly Weather Review, 137 (2).
pp. 693-709.
ISSN 0027-0644
doi: https://doi.org/10.1175/2008MWR2396.1
Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600, Vannitsem, S. and Nicolis, C.
(2008)
Model error and sequential data assimilation: a deterministic formulation.
Quarterly Journal of the Royal Meteorological Society, 134 (634).
pp. 1297-1313.
ISSN 1477-870X
doi: https://doi.org/10.1002/qj.284
Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600, Trevisan, A., Descamps, L., Talagrand, O. and Uboldi, F.
(2008)
Controlling instabilities along a 3DVar analysis cycle by assimilating in the unstable subspace: a comparison with the EnKF.
Nonlinear Processes in Geophysics, 15 (4).
pp. 503-521.
ISSN 1023-5809
doi: https://doi.org/10.5194/npg-15-503-2008
Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600, Ghil, M., Trevisan, A. and Uboldi, F.
(2008)
Data assimilation as a nonlinear dynamical systems problem: stability and convergence of the prediction-assimilation system.
Chaos: An Interdisciplinary Journal of Nonlinear Science, 18 (2).
023112.
ISSN 1089-7682
doi: https://doi.org/10.1063/1.2909862
Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600, Vannitsem, S., Zupanski, D. and Zupanski, M.
(2008)
The maximum likelihood ensemble filter performances in chaotic systems.
Tellus A: Dynamic Meteorology and Oceanography, 61 (5).
pp. 587-600.
ISSN 1600-0870
doi: https://doi.org/10.1111/j.1600-0870.2009.00408.x
Porcù, F., Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600, Medaglia, C. M., Prodi, F. and Mugnai, A.
(2007)
A study on cut-off low vertical structure and precipitation in the Mediterranean region.
Meteorology and Atmospheric Physics, 96.
pp. 121-140.
ISSN 1436-5065
doi: https://doi.org/10.1007/s00703-006-0224-5
Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600, Trevisan, A. and Uboldi, F.
(2007)
Adaptive observations and assimilation in the unstable subspace by breeding on the data-assimilation system.
Tellus A: Dynamic Meteorology and Oceanography, 59 (1).
pp. 101-113.
ISSN 1600-0870
doi: https://doi.org/10.1111/j.1600-0870.2006.00210.x
Uboldi, F., Trevisan, A. and Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600
(2005)
Developing a dynamically based assimilation method for targeted and standard observations.
Nonlinear Processes in Geophysics, 12 (1).
pp. 149-156.
ISSN 1023-5809
doi: https://doi.org/10.5194/npg-12-149-2005
Book or Report Section
Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600, Bocquet, M., Demaeyer, J., Grudzien, C., Raanes, P. and Vannitsem, S.
(2022)
Data Assimilation for Chaotic Dynamics.
In:
Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. IV).
Springer International Publishing, pp. 1-42.
ISBN 9783030777227
doi: https://doi.org/10.1007/978-3-030-77722-7_1
Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600 and Vannitsem, S.
(2016)
Deterministic treatment of model error in geophysical data assimilation.
In: Ancona, F., Cannarsa, P., Jones, C. and Portaluri, A. (eds.)
Mathematical Paradigms of Climate Science.
Springer INdAM Series, 15.
Springer, pp. 175-213.
doi: https://doi.org/10.1007/978-3-319-39092-5_9
Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600 and Vannitsem, S.
(2012)
Accounting for model error in data assimilation.
In:
Mathematical and Algorithmic Aspects of Atmosphere-Ocean Data Assimilation from the European Mathematical Society.
Oberwolfach Report (58).
European Mathematical Society, pp. 3437-3438.
doi: https://doi.org/10.4171/OWR/2012/58
This list was generated on Mon Jan 20 08:23:42 2025 UTC.