Identifying and characterising large ramps in power output of offshore wind farmsDrew, D. R., Barlow, J. F. and Coker, P. J. (2018) Identifying and characterising large ramps in power output of offshore wind farms. Renewable Energy, 127. pp. 195-203. ISSN 0960-1481
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1016/j.renene.2018.04.064 Abstract/SummaryRecently there has been a significant change in the distribution of wind farms in Great Britain with the construction of clusters of large offshore wind farms. These clusters can produce large ramping events (i.e. changes in power output) on temporal scales which are critical for managing the power system (30 minute, 60 minute and 4 hours). This study analyses generation data from the Thames Estuary cluster in conjunction with meteorological observations to determine the magnitude and frequency of ramping events and the meteorological mechanism. Over a 4 hour time window, the extreme ramping events of the Thames Estuary cluster were caused by the passage of a cyclone and associated weather fronts. On shorter time scales, the largest ramping events over 30 minute and 60 minute time windows are not associated with the passage of fronts. They are caused by three main meteorological mechanisms; (1) very high wind speeds associated with a cyclone causing turbine cut-out (2) gusts associated with thunderstorms and (3) organised band of convection following a front. Despite clustering offshore capacity, the addition of offshore wind farms has increased the mean separation between capacity and therefore reduced the variability in nationally aggregated generation on high frequency time scales.
Download Statistics DownloadsDownloads per month over past year Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |