- Alexander, L.V., Uotila, P., Nicholls, N., 2009. Influence of sea surface temperature
variability on global temperature and precipitation extremes. J. Geophys. Res. Atmos.
114https://doi.org/10.1029/2009JD012301. D18116.
- Arblaster, J.M., Alexander, L.V., 2012. The impact of the El Niño-Southern Oscillation on
maximum temperature extremes. Geophys. Res. Lett. 39https://doi.org/10.1029/
2012GL053409. L20702.
- Bi, D., et al., 2013. The ACCESS Coupled Model: Description, Control Climate and
Evaluation. pp. 1–24.
- Donat, M.G., Alexander, L.V., Yang, H., Durre, I., Vose, R., Caesar, J., 2013. Global landbased
datasets for monitoring climatic extremes. Bull. Am. Meteorol. Soc. 94,
997–1006. https://doi.org/10.1175/BAMS-D-12-00109.1.
- Donat, M.G., Alexander, L.V., Herold, N., Dittus, A.J., 2016. Temperature and precipitation
extremes in century-long gridded observations, reanalyses, and atmospheric
model simulations. J. Geophys. Res. Atmos. 121, 11174–11189. https://doi.
org/10.1002/2016JD025480.
- Dong, B., Sutton, R.T., Shaffrey, L., Klingaman, N.P., 2017. Attribution of forced decadal
climate change in coupled and uncoupled ocean-atmosphere model experiments. J.
Clim. 1–50. https://doi.org/10.1175/JCLI-D-16-0578.1. JCLI–D–16–0578.
- England, M.H., et al., 2014. Recent intensification of wind-driven circulation in the
Pacific and the ongoing warming hiatus. Nat. Clim. Change 4, 222–227. https://doi.
org/10.1038/nclimate2106.
- Folland, C., Stone, D., Frederiksen, C., Karoly, D.J., Kinter, J., 2014. The international
CLIVAR climate of the 20th century Plus (C20C+) project: Report of the sixth
workshop. CLIVAR Exch. 19, 57–59.
- Hartmann, D.L., et al., 2013. Observations: atmosphere and surface supplementary material.
Climate change 2013: the physical science basis. In: Stocker, T.F. (Ed.),
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change.
- Hurrell, J.W., et al., 2008. In: A New Sea Surface Temperature and Sea Ice Boundary
Dataset for the Community Atmosphere Model, vol.21. pp. 5145–5153. https://doi.
org/10.1175/2008JCLI2292.1. https://doi.org.ezproxy.lib.monash.edu.au/10.
1175/2008JCLI2292.1.
- Kenyon, J., Hegerl, G.C., 2008. Influence of modes of climate variability on global temperature
extremes. J. Clim. 21, 3872–3889. https://doi.org/10.1175/
2008JCLI2125.1.
- Kenyon, J., Hegerl, G.C., 2010. Influence of modes of climate variability on global precipitation
extremes. J. Clim. 23, 6248–6262. https://doi.org/10.1175/
2010JCLI3617.1.
- Knutti, R., Masson, D., Gettelman, A., 2013. Climate model genealogy: generation CMIP5
and how we got there. Geophys. Res. Lett. 40, 1194–1199. https://doi.org/10.1002/
grl.50256.
- Kosaka, Y., Xie, S.-P., 2013. Recent global-warming hiatus tied to equatorial Pacific
surface cooling. Nature 501, 403–407. https://doi.org/10.1038/nature12534.
- McPhaden, M.J., Zebiak, S.E., Glantz, M.H., 2006. ENSO as an integrating concept in
earth science. Science 314, 1740–1745. https://doi.org/10.1126/science.1132588.
- Meehl, G.A., Teng, H., Arblaster, J.M., 2014. Climate model simulations of the observed
early-2000s hiatus of global warming. Nat. Clim. Change 4, 898–902. https://doi.
org/10.1038/nclimate2357.
- Meehl, G.A., Arblaster, J.M., Fasullo, J.T., Hu, A., Trenberth, K.E., 2011. Model-based
evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat.
Clim. Change 1, 360–364. https://doi.org/10.1038/nclimate1229.
- Neale, R.B., Chen, C.C., Gettelman, A., Lauritzen, P.H., Park, S., Williamson, D.L., Conley,
A.J., Garcia, R., Kinnison, D., Lamarque, J.F., Marsh, D., Mills, M., Smith, A.K.,
Tilmes, S., Vitt, F., Morrison, H., Cameron-Smith, P., Collins, W.D., Iacono, M.J.,
Easter, R.C., Ghan, S.J., Liu, X., Rasch, P.J., Taylor, M.A., 2012. Description of the
NCAR Community Atmosphere Model (CAM 5.0). Technical Report; NCAR
Technical Note NCAR/TN-486+STR. .
- Rayner, N., Parker, D.E., Horton, E.B., Folland, C.K., Alexander, L.V., Rowell, D.P., Kent,
E.C., Kaplan, A., 2003. Global analyses of sea surface temperature, sea ice, and night
marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407.
https://doi.org/10.1029/2002JD002670.
- Shukla, J., 1998. Predictability in the midst of chaos: a scientific basis for climate forecasting.
Science 282, 728–731.
- Sillmann, J., Kharin, V.V., Zhang, X., Zwiers, F.W., Bronaugh, D., 2013. Climate extremes
indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present
climate. J. Geophys. Res. Atmos. 118, 1716–1733. https://doi.org/10.1002/jgrd.
50203. http://onlinelibrary.wiley.com/doi/10.1002/jgrd.50203/full.
- Trenberth, K.E., Caron, J.M., Stepaniak, D.P., Worley, S., 2002. Evolution of El
niño–southern oscillation and global atmospheric surface temperatures. J. Geophys.
Res. Atmosphere 107, 2044. https://doi.org/10.1029/2000JD000298.
- van Rensch, P., Gallant, A.J.E., Cai, W., Nicholls, N., 2015. Evidence of local sea surface
temperatures overriding the southeast Australian rainfall response to the 1997–1998
El Niño. Geophys. Res. Lett. 42, 9449–9456. https://doi.org/10.1002/
2015GL066319.
- Watanabe, M., et al., 2010. Improved climate simulation by MIROC5: mean states,
variability, and climate sensitivity. J. Clim. 23, 6312–6335. https://doi.org/10.1175/
2010JCLI3679.1.
- Watanabe, M., Shiogama, H., Tatebe, H., Hayashi, M., Ishii, M., Kimoto, M., 2014.
Contribution of natural decadal variability to global warming acceleration and
hiatus. Nat. Clim. Change 4, 893–897. https://doi.org/10.1038/nclimate2355.
- Wilks, D.S., 2016. “The stippling shows statistically significant grid points”: how Research
results are routinely overstated and overinterpreted, and what to do about it. Bull.
Am. Meteorol. Soc. 97, 2263–2273. https://doi.org/10.1175/BAMS-D-15-00267.1.
- Zhang, X., Alexander, L., Hegerl, G.C., Jones, P., Tank, A.K., Peterson, T.C., Trewin, B.,
Zwiers, F.W., 2011. Indices for monitoring changes in extremes based on daily
temperature and precipitation data. WIREs Clim Change 2, 851–870. https://doi.org/
10.1002/wcc.147.