Drivers of the severity of the extreme hot summer of 2015 in western ChinaChen, W. and Dong, B. ORCID: https://orcid.org/0000-0003-0809-7911 (2018) Drivers of the severity of the extreme hot summer of 2015 in western China. Journal of Meteorological Research, 32 (6). pp. 1002-1010. ISSN 2198-0934
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1007/s13351-018-8004-y Abstract/SummaryWestern China experienced an extreme hot summer in 2015, breaking a number of temperature records. The summer mean surface air temperature (SAT) anomaly was twice the interannual variability. The hottest daytime temperature (TXx) and warmest night-time temperature (TNx) were the highest in China since 1964. This extreme hot summer occurred in the context of steadily increasing temperatures in recent decades. We carried out a set of experiments to evaluate the extent to which the changes in sea surface temperature (SST)/sea ice extent (SIE) and anthropogenic forcing drove the severity of the extreme summer of 2015 in western China. Our results indicate that about 65–72% of the observed changes in the seasonal mean SAT and the daily maximum (Tmax) and daily minimum (Tmin) temperatures over western China resulted from changes in boundary forcings, including the SST/SIE and anthropogenic forcing. For the relative role of individual forcing, the direct impact of changes in anthropogenic forcing explain about 42% of the SAT warming and 60% (40%) of the increase in TNx and Tmin (TXx and Tmax) in the model response. The changes in SST/SIE contributed to the remaining surface warming and the increase in hot extremes, which are mainly the result of changes in the SST over the Pacific Ocean, where a super El Niño event occurred. Our study indicates a prominent role for the direct impact of anthropogenic forcing in the severity of the extreme hot summer in western China in 2015, although the changes in SST/SIE, as well as the internal variability of the atmosphere, also made a contribution.
Download Statistics DownloadsDownloads per month over past year Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |