Summertime surface energy balance fluxes at two Beijing sitesDou, J., Grimmond, S. ORCID: https://orcid.org/0000-0002-3166-9415, Cheng, Z., Miao, S., Feng, D. and Liao, M. (2019) Summertime surface energy balance fluxes at two Beijing sites. International Journal of Climatology, 39 (5). pp. 2793-2810. ISSN 08998418
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1002/joc.5989 Abstract/SummarySummertime (June to August 2015) radiative and turbulent heat fluxes were measured concurrently at two sites (urban and suburban) in Beijing. The urban site has slightly lower incoming and outgoing shortwave radiation, lower atmospheric transmissivity and a lower surface albedo compared to the suburban site. Both sites receive similar incoming longwave radiation. Although the suburban site had larger daytime outgoing longwave radiation (L_↑), differences in the daily mean L_↑ values are small, as the urban site has higher nocturnal L_↑. Overall, both the midday and daily mean net all-wave radiation (Q^*) for the two sites are nearly equal. However, there are significant differences between the sites in the surface energy partitioning. The urban site has smaller turbulent sensible heat (Q_H) (21-25% of Q^* (midday – daily)) and latent heat (Q_E) fluxes (21-45% of Q^*). Whereas, the suburban proportions of Q^* are Q_H 32-32% and Q_E 39-66%. The daily (midday) mean Bowen ratio (Q_H⁄Q_E ) was 0.56 and 0.49 (0.98 and 0.83) for the urban and suburban sites, respectively. These values are low compared to other urban and suburban areas with similar or larger fractions of vegetated cover. Likely these are caused by the widespread external water use for road cleaning/wetting, greenbelts, and air conditioners. Our suburban site has quite different land cover to most previous suburban studies as crop irrigation supplements rainfall. These results are important in enhancing our understanding of surface–atmosphere energy exchanges in Chinese cities, and can aid the development and evaluation of urban climate models and inform urban planning strategies in the context of rapid global urbanization and climate change.
DownloadsDownloads per month over past year
Allen L, Lindberg F, Grimmond CSB. 2011. Global to city scale urban anthropogenic heat flux: Model and variability. International Journal of Climatology 31: 1990-2005. doi: 10.1002/joc.2210.
Al-Jiboori MH, Hu F. 2005. Surface roughness around a 325-m meteorological tower and its effect on urban turbulence. Advances in Atmospheric Sciences 22 (4): 595-605.
Ao XY, Grimmond CSB, Chang YY, Liu DW, Tang YQ, Hu P, Wang YD, Zou J, Tan JG. 2016a. Heat, water and carbon exchanges in the tall megacity of Shanghai: challenges and results. International Journal of Climatology 36:4608-4624. doi: 10.1002/joc.4657.
Ao XY, Grimmond CSB, Liu DW, Han ZH, Hu P, Wang YD, Zhen XR, Tan J G. 2016b. Radiation fluxes in a business district of Shanghai, China. Journal of Applied Meteorology and Climatology 55: 2451-2468. doi: 10.1175/JAMC-D-16-0082.1.
Arnfield AJ, Grimmond CSB. 1998. An urban canyon energy budget model & its application to urban storage heat flux modelling. Energy & Buildings 27: 61-68.
Aubinet M, Grelle A, Ibrom A, Rannik Ü, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer CH, Clement R, Elbers J, Granier A, GrÜnwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T. 2000. Estimates of the annual net carbon and water exchange of European forests: The EUROFLUX methodology. Advances in Ecological Research 30: 113-175. doi: 10.1016/S0065-2504(08)60018-5.
Balogun AA, Adegoke JO, Vezhapparambu S, Mauder M, McFadden JP, Gallo K. 2009. Surface energy balance measurements above an exurban residential neighbourhood of Kansas City, Missouri. Boundary-Layer Meteorology 133: 299-321. doi: 10.1007/s10546-009-9421-3.
Beijing Municipal Bureau of Statistics. 2016. Beijing Statistical Yearbook, 2016.
Beijing statistical information net. http://www.bjstats.gov.cn/tjsj/
Beijing Municipal Bureau of Statistics, Permanent population (1978-2016), 2017. Beijing: Beijing statistical information net. (Published in July 26, 2017). http://www.bjstats.gov.cn/tjsj/cysj/201511/t20151109_311727.html
Best MJ, Grimmond CSB. 2015. Key conclusions of the first international urban land surface model comparison project. Bulletin of the American Meteorological Society 96 (5): 805-819. doi: https://doi.org/10.1175/BAMS-D-14-00122.1
Bergeron O, Strachan IB. 2012.Wintertime radiation and energy budget along an urbanization gradient in Montreal, Canada. International Journal of Climatology 32: 137-152. doi: 10.1002/joc.2246.
Center for International Earth Science Information Network, Columbia University, 2016. Gridded Population of the World, Version 4 (GPWv4): Population Count Grid. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC).
http://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density/metadata
Chan CK, Yao XH. 2008. Air pollution in mega cities in China. Atmospheric Environment 42:1-42. doi:10.1016/j.atmosenv.2007.09.003
China Centre for Resources Satellite Data and Application, China Aerospace Science and Technology Corporation, 2016. GF-2 (Gaofen-2) High-resolution Image.
http://218.247.138.119:7777/DSSPlatform/productSearch.html
Christen A, Vogt R. 2004. Energy and radiation balance of a central European city. International Journal of Climatology 24: 1395-1421. doi: 10.1002/joc.1074.
Coutts AM, Beringer J, Tapper NJ. 2007. Impact of increasing urban density on local climate: spatial and temporal variations in the surface energy balance in Melbourne, Australia. Journal of Applied Meteorology and Climatology 46: 477-493. doi: 10.1175/JAM2462.1.
Duffie JA, Beckman WA. 2013. Solar Engineering of Thermal Processes, John Wiley and Sons Inc.: Hoboken, New Jersey. pp 75-77.
Eichinger WE. 1996. On the concept of equilibrium evaporation and the value of the Priestley-Taylor coefficient. Water Resources Research 32: 161-164. doi: 10.1029/95WR02920.
Flerchinger GN, Xaio W, Marks D, Sauer TJ, Yu Q. 2009. Comparison of algorithms for incoming atmospheric longwave radiation. Water Resources Research 45: W03423. doi: 10.1029/2008WR007394.
Frey CM, Parlow E, Vogt R, Harhash M, Wahab MMA. 2011. Flux measurements in Cairo. Part 1: in situ measurements and their applicability for comparison with satellite data. International Journal of Climatology 31: 218-231. doi: 10.1002/joc.2140.
Gabey A, Grimmond S, Capel-Timms I. 2018. Anthropogenic Heat Flux: advisable spatial resolutions when input data are scarce. Theoretical and Applied Climatology https://doi.org/10.1007/s00704-018-2367-y
Goldbach A, Kuttler W. 2012. Quantification of turbulent heat fluxes for adaptation strategies within urban planning. International Journal of Climatology 33(1):143-159. doi: 10.1002/joc.3437.
Grimmond CSB, Oke TR. 1995. Comparison of heat fluxes from summertime observations in the suburbs of four North American cities. Journal of Applied Meteorology 34: 873-889.
Grimmond CSB, Oke TR. 1999a. Aerodynamic properties of urban areas derived, from analysis of surface form. Journal of Applied Meteorology 34:873-889.
Grimmond CSB, Oke TR. 1999b. Heat storage in urban areas: local-scale observations and evaluation of a simple model. Journal of Applied Meteorology 38:922-940.
Grimmond CSB, Oke TR. 2002. Turbulent heat fluxes in urban areas: Observations and a local-scale urban meteorological parameterization scheme (LUMPS). Journal of Applied Meteorology 41(7): 792- 810.
Grimmond CSB, Salmond JA, Oke TR, Offerle B, Lemonsu A. 2004. Flux and turbulence measurements at a densely built-up site in Marseille: heat, mass (water and carbon dioxide), and momentum. Journal of Geophysical Research 109 (D24): 241011-24120. doi: 10.1029/2004JD004936.
Guo WD, Wang XQ, Sun JN, Ding AJ, Zou J. 2016. Comparison of land–atmosphere interaction at different surface types in the mid- to lower reaches of the Yangtze River valley. Atmospheric Chemistry and Physics 16: 9875-9890. doi:10.5194/acp-16-9875-2016.
Hertwig D, Gough H, Grimmond CSB, Barlow J, Kent C, Lin W, A Robins. Wake characteristics of tall buildings in a complex urban canopy. Boundary-Layer Meteorology (in review).
Huang H, Li YH, Han SQ, Wu BG, Zhang YX, Li C. 2011. Turbulent statistic characteristic of the urban boundary layer in Tianjin. Plateau Meteorology 30: 1481-1487 (in Chinese).
Kanda M, Inagaki A, Miyamoto T, Gryschka M, Raasch S. 2013. A new aerodynamic parametrization for real urban surfaces. Boundary-Layer Meteorology 148: 357-377. doi: 10.1007/s10546-013-9818-x.
Kawai T, Kanda M. 2010a. Urban energy balance obtained from the comprehensive outdoor scale model experiment. Part I: Basic features of the surface energy balance. Journal of Applied and Climatology 49: 1341-1359. doi: 10.1175/2010JAMC1992.1
Kawai T, Kanda M. 2010b. Urban energy balance obtained from the comprehensive outdoor scale model experiment. Part II: comparisons with field data using an improved energy partition. Journal of Applied Meteorology and Climatology 49: 1360-1376. doi: 10.1175/2010JAMC1993.1.
Kent CW, Grimmond CSB, Barlow J, Gatey D, Kotthaus S, Lindberg F, Halios CH. 2017. Evaluation of urban local-scale aerodynamic parameters: implications for the vertical profile of wind and source areas. Boundary Layer Meteorology 164: 183-213. doi: 10.1007/s10546-017-0248-z.
Kljun N, Calanca P, Rotach MW, Schmid HP. 2004. A simple parameterization for flux footprint predictions. Boundary-Layer Meteorology 112: 503-523. doi: 10.1023/B:BOUN.0000030653.71031.96.
Kotthaus S, Grimmond CSB. 2014a. Energy exchange in a dense urban environment- Part I: temporal variability of long-term observations in central London. Urban Climate 10: 261-280. doi: 10.1016/j.uclim.2013.10.002.
Kotthaus S, Grimmond CSB. 2014b. Energy exchange in a dense urban environment- Part II: impact of spatial heterogeneity of the surface. Urban Climate 10: 281-307. doi: 10.1016/j.uclim.2013.10.001.
Lei HM, Yang DW. 2010. Interannual and seasonal variability in evapotranspiration and energy partitioning over an irrigated cropland in the North China Plain. Agricultural and Forest Meteorology 150: 581-589. doi:10.1016/j.agrformet.2010.01.022.
Li Q, Liu HZ, Hu F, Hong ZX, Li AG. 2003. The determination of the aerodynamical parameters over urban land surface. Climatic and Environment Research 8 (4): 443-450. (in Chinese)
LI-COR, Inc. 2017. EddyPro software instruction manual. 7-75pp. https://www.licor.com/env/help/eddypro/topics_eddypro/EddyPro_Home.html
Lindberg F, Grimmond CSB, Gabey A, Huang B, Kent CW, Sun T, Theeuwes NE, Järvi L, Ward H, Capel-Timms I, Chang YY, Jonsson P, Krave N, Liu DW, Meyer D, Olofson KFG, Tan JG, Wästberg D, Xue L, Zhang Z. 2018. Urban multiscale environmental predictor (UMEP) - An integrated tool for city-based climate services. Environmental Modelling and Software 99: 70-87. doi: 10.1016/j.envsoft.2017.09.020.
Lindberg F, Grimmond CSB, Yogeswaran N, Kotthaus S, Allen L. 2013. Impact of city changes and weather on anthropogenic heat flux in Europe 1995-2015. Urban Climate 4: 1-15.
Liu HZ, Feng JW, Järvi L, Vesala T. 2012. Four-year (2006–2009) eddy covariance measurements of CO2 flux over an urban area in Beijing. Atmospheric Chemistry and Physics 12: 7881-7892. doi:10.5194/acp-12-7881-2012.
McMahon TA, Peel MC, Lowe L, Srikanthan R, McVicar TR. 2013. Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis. Hydrology and Earth System Sciences 17: 1331-1363. doi: 10.5194/hess-17-1331-2013.
Miao SG, Dou JX, Chen F, Li J, Li AG. 2012. Analysis of observations on the urban surface energy balance in Beijing. Science China Earth Science 55(11): 1881-1890. doi: 10.1007/s11430-012-4411-6.
Millward-Hopkins JT, Tomlin AS, Ma L, Ingham D, Pourkashanian M. 2011. Estimating aerodynamic parameters of urban-like surfaces with heterogeneous building heights. Boundary-Layer Meteorology 141: 443-465. doi: https://doi.org/10.1007/s10546-011-9640-2.
Moncrieff JB, Massheder JM, de Bruin H, Elbers J, Friborg T, Heusinkveld B, Kabat P, Scott S, Soegaard H, Verhoef A. 1997. A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. Journal of Hydrology 188-199: 589-611. doi: 10.1016/S0022-1694(96)03194-0.
Moriwaki R, Kanda M. 2004. Seasonal and diurnal fluxes of radiation, heat, water vapor, and carbon dioxide over a suburban area. Journal of Applied Meteorology and Climatology 43(11): 1700-1710.
Newton T, Oke TR, Grimmond CSB, Roth M. 2007. The suburban energy balance in Miami, Florida. Geografiska Annaler Series A-Physical Geography 89(4): 331-347.
Offerle B, Grimmond CSB, Fortuniak K, Kłysik K, Oke TR. 2006a. Temporal variations in heat fluxes over a central European city centre. Theoretical and Applied Climatology 84(1-3): 103-115. doi: 10.1007/s00704-005-0148-x.
Offerle B, Grimmond CSB, Fortuniak K, Pawlak W. 2006b. Intraurban differences of surface energy fluxes in a central European city. Journal of Applied Meteorology and Climatology 45: 125-136.
Oke, T. R. (1978) Boundary Layer Climates. Methuen & Co Ltd, London.
Oke, T. R., 1988: The urban energy balance. Progress in Physical Geography 12: 471-508.
Oke, T. R., Mills, G., Christen, A., Voogt, J. A. (2017) Urban Climates. Cambridge: Cambridge University Press. 525pp. DOI: 10.1017/9781139016476.
Peng J, Grimmond CSB, Fu XS, Chang YY, Zhang G, Guo Jibing, Tang CY, Gao J, Xu XD, Tan JG. 2017. Ceilometer based analysis of Shanghai's boundary layer height (under rain and fog free conditions). Journal Atmospheric and Oceanic Technology 34: 749-764. doi: 10.1175/JTECH-D-16-0132.1.
Peng JL, Wu X, Jiang ZH, Liu HN. 2008. Characteristics analysis of energy budget over urban and suburban underlying surfaces in Nanjing. Scientia Meteorologia Sinica 28: 21-29 (in Chinese).
Peng Z, Hu F. 2006. A study of the influence of urbanization of Beijing on the boundary wind structure. Chinese Journal of Geophysics 49(6): 1608-1615. (in Chinese).
Priestley CHB, Taylor RJ. 1972. On the assessment of surface heat flux and evaporation. Monthly Weather Review 106: 81-92.
Raupach MR. 2001. Combination theory and equilibrium evaporation. Quarterly Journal of the Royal Meteorological Society 127: 1149-1181. doi: 10.1002/qj.49712757402.
Rotach MW, Vogt R, Bernhofer C, Batchvarova E, Christen A, Clappier A, Feddersen B, Gryning SE, Martucci G, Mayer H, Mitev V, Oke TR, Parlow E, Richner H, Roth M, Roulet Y A, Ruffieux D, Salmond JA, Schatzmann M, Voogt JA. 2005. BUBBLE- an urban boundary layer meteorology project. Theoretical and Applied Climatology 81: 231-261. doi: 10.1007/s00704-004-0117-9.
Roth M. 2000. Review of atmospheric turbulence over cities. Quarterly Journal of the Royal Meteorological Society 126: 941–990. doi: 10.1002/qj.49712656409.
Roth M, Jansson C, Velasco E. 2017. Multi-year energy balance and carbon dioxide fluxes over a residential neighbourhood in a tropical city. International Journal of Climatology 37: 2679-2698. doi:10.1002/joc.4873.
Schmid HP, Cleugh HA, Grimmond CSB, Oke TR. 1991. Spatial variability of energy fluxes in suburban terrain. Boundary-Layer Meteorology 54: 249-276. doi: 10.1007/bf00183956.
Slatyer RO, McIlroy IC. 1961. Practical microclimatology, CSIRO, Melbourne, Australia, 310pp.
Spronken-Smith RA. 2002. Comparison of summer- and winter-time suburban energy fluxes in Christchurch, New Zealand. International Journal of Climatology 22: 979-992. doi:10.1002/joc.767.
Statistics Bureau of Miyun District, Beijing. 2016. Beijing Miyun Statistical Yearbook 2016. http://tjj.bjmy.gov.cn/Page-483
Stewart ID, Oke TR. 2012. Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society 93(12): 1879-1900. doi: 10.1175/BAMS-D-11-00019.1.
UN-Habitat. 2016. United Nations Human Settlements Programme: Urbanization and development: emerging futures, World Cities Report 2016, UN-Habitat. http://wcr.unhabitat.org/main-report.
Vesala T, Ja¨rvi L, Launiainen S, Sogachev A, Rannik U¨ , Mammarella I, Siivola E, Keronen P, Rinne J, Riikonen A, Nikinmaa E. 2008. Surface-atmosphere interactions over complex urban terrain in Helsinki, Finland. Tellus, Series B: Chemical and Physical Meteorology 60(2): 188-199. doi: 10.1111/j.1600-0889.2007.00312.x.
Wang K, Dickinson RE. 2013. Global atmospheric downward longwave radiation at the surface from ground-based observations, satellite retrievals, and reanalyses. Reviews of Geophysics 51: 150-185. doi: 10.1002/rog.20009.
Wang LL, Gao ZQ, Miao SG, Guo XF, Sun T, Liu MF, Li D. 2015. Contrasting characteristics of the surface energy balance between the urban and rural areas of Beijing. Advances in Atmospheric Sciences 32 (4): 505-514. doi: 10.1007/s00376-014-3222-4.
Ward HC, Evans JG, Grimmond CSB. 2013. Multi-season eddy covariance observations of energy, water and carbon fluxes over a suburban area in Swindon, UK. Atmospheric Chemistry and Physics 13: 4645-4666. doi: 10.5194/acp-13-4645-2013.
Webb E, Pearman G, Leuning R. 1980. Correction of the flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society 106: 85-100.
Weber S, Kordowski K. 2010. Comparison of atmospheric turbulence characteristics and turbulent fluxes from two urban sites in Essen, Germany. Theoretical and Applied Climatology 102: 61-74. doi: 10.1007/s00704-009-0240-8.
Yao XH, Chan CK, Fang M, Cadle S, Chan T, Mulawa P, He KB, Ye BM. 2002. The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmospheric Environment 36: 4223-4234. doi: 10.1016/S1352-2310(02)00342-4.
Yin DZ, Hong ZX. 1999. Study on the boundary layer structure and parameters under heavy pollution conditions in Beijing. Climatic and Environment Research 4 (3): 303-307. (in Chinese)
Zhang JY, Wu LY, Yuan F, Dou JJ, Miao SG. 2015. Mass human migration and Beijing’s urban heat island during the Chinese New Year holiday. Science Bulletin 60: 1038-1041. doi: 10.1007/s11434-015-0809-9.
Zhang YL, Cao F. 2015. Fine particulate matter (PM2.5) in China at a city level. Scientific Reports 5: 14884. doi: 10.1038/srep14884.
Zhang YZ, Miao SG, Dai YJ, Liu YH. 2013. Numerical simulation of characteristics of summer clear day boundary layer in Beijing and the impact of urban underlying surface on sea breeze. Chinese Journal of Geophysics 56: 2558-2573. doi: 10.6038/cjg20130806 (in Chinese).
Zhao XJ, Zhang XL, Xu XF, Xu J, Meng W, Pu WW. 2009. Seasonal and diurnal variations of ambient PM2.5 concentration in urban and rural environments in Beijing. Atmospheric Environment 43: 2893-2900. doi: 10.1016/j.atmosenv.2009.03.009.
Zhao XJ, Zhao PS, Xu J, Meng W, Pu WW, Dong F, He D, Shi QF. 2013. Analysis of a winter regional haze event and its formation mechanism in the North China Plain. Atmospheric Chemistry and Physics 13: 5685-5696. doi: 10.5194/acp-13-5685-2013.
Zhao XS, Guan DX, Wu JB, Jin CJ, 2004. Zero-plane displacement and roughness length of the mixed forest of broad-leaved and Korean-pine in Changbai Mountain. Chinese Journal of Ecology 23: 84-88. (in Chinese)
Zou J, Sun JN, Liu G. 2011. Turbulence characteristics in the urban surface layer. Journal of the Meteorological Sciences 31(4): 525-533. (in Chinese) University Staff: Request a correction | Centaur Editors: Update this record |