Accessibility navigation

Lava flow morphology at an erupting andesitic stratovolcano: a satellite perspective on El Reventador, Ecuador

Arnold, D. W. D., Biggs, J., Dietterich, H. R., Vallejo Vargas, S., Wadge, G. and Mothes, P. (2019) Lava flow morphology at an erupting andesitic stratovolcano: a satellite perspective on El Reventador, Ecuador. Journal of Volcanology and Geothermal Research, 372. pp. 34-47. ISSN 0377-0273

Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

[img] Text - Accepted Version
· Restricted to Repository staff only


It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1016/j.jvolgeores.2019.01.009


Lava flows pose a significant hazard to infrastructure and property located close to volcanoes, and understanding how flows advance is necessary to manage volcanic hazard during eruptions. Compared to low-silica basaltic flows, flows of andesite composition are infrequently erupted and so relatively few studies of their characteristics and behaviour exist. We use El Reventador, Ecuador as a target to investigate andesitic lava flow properties during a 4.5 year period of extrusive eruption between February 2012 and August 2016. We use satellite radar to map the dimensions of 43 lava flows and look at variations in their emplacement behaviour over time. We find that flows descend the north and south flanks of El Reventador, and were mostly emplaced during durations shorter than the satellite repeat interval of 24 days.Flows ranged in length from 0.3 to 1.7 km, and the length of these flows decreased over the observation period. We measure a decrease in flow volume with time that is correlated with a long-term exponential decrease in eruption rate, and propose that this behaviour is caused by temporary magma storage in the conduit acting as a melt capacitor between the magma reservoir and the surface. We use the dimensions of the flow levees and widths to estimate the flow yield strengths, which were of the order of 10-100 kPa. We observe that some flows were diverted by topographic obstacles, and compare measurements of decreased channel width and increased flow thickness at the obstacles with observations from laboratory experiments. Radar observations, such as those presented here, could be used to map and measure properties of evolving lava flow fields at other remote or difficult to monitor volcanoes.

Item Type:Article
Divisions:Science > School of Mathematical, Physical and Computational Sciences > National Centre for Earth Observation (NCEO)
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:82202


Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation