Adams-Selin RD, van den Heever SC, Johnson RH. 2013. Sensitivity of bow-echo simulation to microphysical parameterizations. Wea. Forecasting 28: 1188–
278 1209, doi:10.1175/WAF-D-12-00108.1.
279 Ancell BC, Bogusz A, Lauridsen MJ, Nauert CJ. 2018. Seeding chaos: The dire consequences of numerical noise in NWP perturbation experiments. Bull. Amer.
280 Meteorol. Soc. 99: 615–628, doi:10.1175/BAMS-D-17-0129.1.
281 Baldauf M, Seifert A, Fo¨rstner J, Majewski D, Raschendorfer M, Reinhardt T. 2011. Operational Convective-Scale Numerical Weather Prediction with the
282 COSMO Model: Description and Sensitivities. Mon. Wea. Rev. 139: 3887–3905, doi:10.1175/MWR-D-10-05013.1.
c 0000 Royal Meteorological Society
Prepared using qjrms4.cls
14 Flack et al.
Barthlott C, M¨uhr B, Hoose C. 2017. Sensitivity of the 2014 Pentecost 283 storms over Germany to different model grids and microphysics schemes. Q. J. R.
284 Meteorol. Soc. 143: 1485–1503, doi:10.1002/qj.3019.
285 Bennett LJ. 2007. Obersvations of boundary-layer development and initiation of precipitating convection. PhD thesis, University of Leeds.
286 Bowler NE, Arribas A, Beare SE,Mylne KR, Shutts GJ. 2009. The local ETKF and SKEB: Upgrades to theMOGREPS short-range ensemble prediction system.
287 Q. J. R. Meteorol. Soc. 135: 767–776, doi:10.1002/qj.394.
288 Bowler NE, Arribas A, Mylne KR, Robertson KB, Beare SE. 2008. The MOGREPS short-range ensemble prediction system. Q. J. R. Meteorol. Soc. 134:
289 703–722, doi:10.1002/qj.234.
290 Browning KA, Morcrette CJ, Nicol J, Blyth AM, Bennett LJ, Brooks BJ, Marsham J, Mobbs SD, Parker DJ, Perry F, Clark PA, Ballard SP, Dixon MA, Forbes
291 RM, Lean HW, Li Z, Roberts NM, Corsmeier U, Barthlott C, Deny B, Kalthoff N, Khodayar S, Kohler M, Kottmeier C, Kraut S, Kunz M, Lenfant J, Wieser
292 A, Agnew JL, Bamber D, McGregor J, Beswick KM, Gray MD, Norton E, Ricketts HMA, Russell A, Vaughan G, Webb AR, Bitter M, Feuerle T, Hankers
293 R, Schulz H, Bozier KE, Collier CG, Davies F, Gaffard C, Hewison TJ, Ladd DN, Slack EC, Waight J, Ramatschi M, Wareing DP, Watson RJ. 2007. The
294 Convective Storm Initiation Project. Bull. Amer. Meteorol. Soc. 88: 1939–1955, doi:10.1175/BAMS-88-12-1939.
295 Buizza R, Palmer TN. 1995. The singular vector structure of the atmospheric general circulation. J. Atmos. Sci. 52: 1434–1456, doi:10.1175/1520-0469(1995)
296 052$h$1434:TSVSOT$i$2.0.CO;2.
297 Casati B, Wilson LJ, Stephenson DB, Nurmi P, Ghelli A, Pocernich M, Damrath U, Ebert EE, Brown BG, Mason S. 2008. Forecast verification: current status
298 and future directions. Meteorol. Appl. 15: 3–18, doi:10.1002/met.52.
299 Clark AJ, Gallus Jr WA, Xue M, Kong F. 2009. A comparison of precipitation forecast skill between small convection-allowing and large convection300
parameterizing ensembles. Wea. Forecasting 24: 1121–1140, doi:10.1175/2009WAF2222318.1.
301 Clark P, Lean H. 2006. An overview of high resolution UM performance for CSIP cases. Met Office, Joint Centre for Mesoscale Meteorology Report 155: 44.
302 Clark P, Roberts N, Lean H, Ballard SP, Charlton-Perez C. 2016. Convection-permitting models: A step-change in rainfall forecasting. Meteorol. Appl. 23:
303 165–181, doi:10.1002/met.1538.
304 Clarke SJ, Gray SL, Roberts NM. 2019. Downstream influence of mesoscale convective systems:Part 1, influence on forecast evolution. submitted to Q. J. R.
305 Meteorol. Soc. .
306 Davies T, Cullen M, Malcolm A, Mawson M, Staniforth A, White A, Wood N. 2005. A new dynamical core for the Met Office’s global and regional modelling
307 of the atmosphere. Q. J. R. Meteorol. Soc. 131: 1759–1782, doi:10.1256/qj.04.101.
308 Derbyshire S, Beau I, Bechtold P, Grandpiex JY, Piriou JM, Redelsperger JL, Soares P. 2004. Sensitivity of moist convection to environmental humidity. Q. J.
309 R. Meteorol. Soc. 130: 3055–3079, doi:10.1256/qj.03.130.
310 Dey SRA, Leoncini G, Roberts NM, Plant RS, Migliorini S. 2014. A spatial view of ensemble spread in convection permitting ensembles. Mon. Wea. Rev. 142:
311 4091–4107, doi:10.1175/MWR-D-14-00172.1.
312 Done J, Craig G, Gray S, Clark P, Gray M. 2006. Mesoscale simulations of organized convection: Importance of convective equilibrium. Q. J. R. Meteorol. Soc.
313 132: 737–756, doi:10.1256/qj.04.84.
314 Done J, Craig G, Gray S, Clark PA. 2012. Case-to-case variability of predictability of deep convection in a mesoscale model. Q. J. R. Meteorol. Soc. 138:
315 638–648, doi:10.1002/qj.943.
316 Ebert EE. 2008. Fuzzy verification of high-resolution gridded forecasts: a review and proposed framework. Meteorol. Appl. 15: 51–64, doi:10.1002/met.25.
317 Edwards J, Slingo A. 1996. Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Q. J. R. Meteorol. Soc. 122: 689–719,
318 doi:10.1002/qj.49712253107.
319 Essery R, Best M, Cox P. 2001. MOSES 2.2 technical documentation. Technical Report 30, Hadley Centre. Available at http://www.metoffice.gov.
320 uk/research/hadleycentre/pubs/HCTN/index.html.
321 Flack DLA, Gray SL, Plant RS, Lean HW, Craig GC. 2018. Convective-scale perturbation growth across the spectrum of convective regimes. Mon. Wea. Rev.
322 146: 387–405, doi:10.1175/MWR-D-17-0024.1.
323 Gilmore MS, Straka JM, Rasmussen EN. 2004. Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics
324 scheme. Mon. Wea. Rev. 132: 2610–2627, doi:10.1175/MWR2810.1.
325 Gregory D, Rowntree P. 1990. A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Wea.
326 Rev. 118: 1483–1506, doi:10.1175/1520-0493(1990)118$h$1483:AMFCSW$i$2.0.CO;2.
327 Hagelin S, Son J, Swinbank R, McCabe A, Roberts N, Tennant W. 2017. The Met Office convective-scale ensemble, MOGREPS-UK. Q. J. R. Meteorol. Soc.
328 143: 2846–2861, doi:10.1002/qj.3135.
c 0000 Royal Meteorological Society
Prepared using qjrms4.cls
Case Study Sensitivity Analysis 15
Hamill TM. 1999. Hypothesis 329 tests for evaluating numerical precipitation forecasts. Wea. Forecasting 14: 155–167, doi:10.1175/1520-0434(1999)014h0155:
330 HTFENPi2.0.CO;2.
331 Hartmann D, Buizza R, Plamer T. 1995. Singular vectors: The effect of spatial scale on linear growth of disturbances. J. Atmos. Sci. 52: 3885–3894, doi:
332 10.1175/1520-0469(1995)052$h$3885:SVTEOS$i$2.0.CO;2.
333 Hohenegger C, Scha¨r C. 2007. Atmospheric predictability at synoptic versus cloud-resolving scales. Bull. Amer. Meteorol. Soc. 88: 1783–1793, doi:
334 10.1175/BAMS-88-11-1783.
335 Khodayar S. 2009. High-resolution analysis of the initiation of the deep convection formed by boundary-layer processes. PhD thesis, Univeristy of Karlsruhe.
336 Lean HW, Clark PA, Dixon M, Roberts NM, Fitch A, Forbes R, Halliwell C. 2008. Characteristics of high-resolution versions of the Met Office Unified Model
337 for forecasting convection over the United Kingdom. Mon. Wea. Rev. 136: 3408–3424, doi:10.1175/2008MWR2332.1.
338 Leoncini G, Plant R, Gray S, Clark P. 2010. Perturbation growth at the convective scale for CSIP IOP18. Q. J. R. Meteorol. Soc. 136: 653–670, doi:
339 10.1002/qj.587.
340 Leoncini G, Plant R, Gray S, Clark P. 2013. Ensemble forecasts of a flood-producing storm: Comparison of the influence of model-state perturbations and
341 parameter modifications. Q. J. R. Meteorol. Soc. 139: 198–211, doi:10.1002/qj.1951.
342 Lock A, Brown A, Bush M, Martin G, Smith R. 2000. A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon.
343 Wea. Rev. 128: 3187–3199, doi:10.1175/1520-0493(2000)128$h$3187:ANBLMS$i$2.0.CO;2.
344 Mahoney KM, Lackmann GM. 2006. The sensitivity of numerical forecasts to convective parameterization: A case study of the 17 february 2004 east coast
345 cyclone. Wea. Forecasting 21: 465–488, doi:10.1175/WAF937.1.
346 McCabe A, R S, Tennant W, A L. 2016. Representing model uncertainty in the met office convection-permitting ensemble prediction system and its impact on
347 fog forecasting. Q. J. R. Meteorol. Soc. 142: 2897–2910, doi:10.1002/qj.2876.
348 Met Office. 2003. 1 km resolution UK composite rainfall data from the Met Office Nimrod System, NCAS British Atmospheric Data Centre. http:
349 //catalogue.ceda.ac.uk/uuid/27dd6ffba67f667a18c62de5c3456350. [accessed 02/2017].
350 NERC Satellite Receiving Station. 2005. NERC Satellite Receiving Station, Dundee Unviersity, Scotland. http://www.sat.dundee.ac.uk/. [accessed
351 21/02/17].
352 Oleson KW, Bonan GB, Feddema J, Vertenstein M. 2008. An urban parameterization for a global climate model. Part II: Sensitivity to input parameters and the
353 simulated urban heat island in offline simulations. J. Appl. Meteorol. Climatol. 47: 1061–1076, doi:10.1175/2007JAMC1598.1.
354 Planche C, Marsham JH, Field PR, Carslaw KS, Hill AA, Mann GW, Shipway BJ. 2015. Precipitation sensitivity to autoconversion rate in a numerical weather
355 prediction model. Q. J. R. Meteorol. Soc. 141: 2032–2044, doi:10.1002/qj.2497.
356 Price J, Porson A, Lock A. 2015. An observational case study of persistent fog and comparison with an ensemble forecast model. Boundary Layer Meteorol.
357 155: 301–327, doi:10.1007/s10546-014-9995-2.
358 Roberts N. 2003. Stage 2 report from the storm-scale numerical modelling project. Technical Report 407, Met Office R&D. Available at: http://www.
359 metoffice.gov.uk/research/nwp/publications/papers/technicalreports/index.html.
360 Roberts N, Lean H. 2008. Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev. 136: 78–97,
361 doi:10.1175/2007MWR2123.1.
362 Seity Y, Brousseau P, Malardel S, Hello G, Be´nard P, Bouttier F, Lac C, Masson V. 2011. The AROME-France Convective-Scale Operational Model. Mon. Wea.
363 Rev. 139: 976–991, doi:10.1175/2010MWR3425.1.
364 Storer RL, van den Heever SC, Stephens GL. 2010. Modelling aerosol impacts on convective storms in different environments. J. Atmos. Sci. 67: 3904–3915,
365 doi:10.1175/2010JAS3363.1.
366 Sun WY, Bosilovich MG. 1996. Planetary boundary layer and surface layer sensitivity to land surface parameters. Boundary Layer Meteorol. 77: 353–378,
367 doi:10.1007/BF00123532.
368 Thompson G, Rasmussen RM, Manning K. 2004. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description
369 and sensitivity analysis. Mon. Wea. Rev. 132: 519–542, doi:10.1175/1520-0493(2004)132$h$0519:EFOWPU$i$2.0.CO;2.
370 Toth Z, Kalnay E. 1997. Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev. 125: 3297–3319, doi:10.1175/1520-0493(1997)125$h$3297:
371 EFANAT$i$2.0.CO;2.
372 Tripoli GJ, Cotton WR. 1980. A numerical investigation of several factors contributing to the observed variable intensity of deep convection over south florida.
373 J. App. Meteor. 19: 1037–1063, doi:10.1175/1520-0450(1980)019h1037:ANIOSFi2.0.CO;2.
374 Wilson D, Forbes R. 2004. Unified Model documentation paper 26. The large-scale precipitation parametrization scheme. version 6.01. Technical report, Met
375 Office, FitzRoy Road, Exeter, Devon, EX1 3PB.
c 0000 Royal Meteorological Society
Prepared using qjrms4.cls
16 Flack et al.
Wilson DR, Ballard SP. 1999. A microphysically 376 based precipitation scheme for the UK Meteorological Office Unified Model. Q. J. R. Meteorol. Soc. 125:
377 1607–1636, doi:10.1002/qj.49712555707.
378 Zampieri M, Malguzzi P, Buzzi A. 2005. Sensitivity of quantitative precipitation forecasts to boundary layer parameterization: a flash flood case study in the
379 western Mediterranean. Nat. Hazards and Earth Sys. Sci. 5: 603–612, doi:10.5194/nhess-5-603-2005.
380 Zhang D, Anthes RA. 1982. A high-resolution model of the planetary boundary layer – sensitivity tests and comparisons with SESAME-79 data. J. Appl.
381 Meteorol. 21: 1594–1609, doi:10.1175/1520-0450(1982)021$h$1594:AHRMOT$i$2.0.CO;2.
382 Zhang F, Snyder C, Rotunno R. 2003. Effects of moist convection on mesoscale predictability. J. Atmos. Sci. 60: 1173–1185, doi:10.1175/1520-0469(2003)
383 060$h$1173:EOMCOM$i$2.0.CO;2.