Accessibility navigation


The contribution of tropical cyclones to the atmospheric branch of Middle America's hydrological cycle using observed and reanalysis tracks

Franco-Díaz, A., Klingaman, N. P. ORCID: https://orcid.org/0000-0002-2927-9303, Vidale, P. L., Guo, L. and Demory, M.-E. (2019) The contribution of tropical cyclones to the atmospheric branch of Middle America's hydrological cycle using observed and reanalysis tracks. Climate Dynamics, 53 (9-10). pp. 6145-6158. ISSN 1432-0894

[img]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

15MB
[img] Text - Accepted Version
· Restricted to Repository staff only

13MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1007/s00382-019-04920-z

Abstract/Summary

Middle America is affected by tropical cyclones (TCs) from the Eastern Pacific and the North Atlantic Oceans. We characterize the regional climatology (1998-2016) of the TC contributions to the atmospheric branch of the hydrological cycle, from May to December. TC contributions to rainfall are quantified using Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) product 3B42 and TC tracks derived from three sources: the International Best Track Archive for Climate Stewardship (IBTrACS), and an objective feature tracking method applied to the Japanese 55-year and ERA-Interim reanalyses. From July to October, TCs contribute 10-30% of rainfall over the west and east coast of Mexico and central Mexico, with the largest monthly contribution during September over the Baja California Peninsula (up to 90%). TCs are associated with 40-60% of daily extreme rainfall (above the 95th percentile) over the coasts of Mexico. IBTrACS and reanalyses agree on TC contributions over the Atlantic Ocean but disagree over the Eastern Pacific Ocean and continent; differences over the continent are mainly attributed to discrepancies in TC tracks in proximity to the coast and TC lifetime. Reanalysis estimates of TC moisture transports show that TCs are an important moisture source for the regional water budget. TC vertically integrated moisture flux (VIMF) convergence can turn regions of weak VIMF divergence by the mean circulation into regions of weak VIMF convergence. We discuss deficiencies in the observed and reanalysis TC tracks, which limit our ability to quantify robustly the contribution of TCs to the regional hydrological cycle.

Item Type:Article
Refereed:Yes
Divisions:Science > School of Mathematical, Physical and Computational Sciences > NCAS
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:85446
Publisher:Springer

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation