Accessibility navigation

Impact of Tibetan Orography and Heating on the Summer Flow over Asia

Liu, Y., Hoskins, B. J. and Blackburn, M. (2007) Impact of Tibetan Orography and Heating on the Summer Flow over Asia. Journal of the Meteorological Society of Japan, 85B. pp. 1-19. ISSN 0026-1165

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.2151/jmsj.85B.1


The influence on the summer flow over Asia of both the orographic and thermal forcing of the Tibetan Plateau is investigated using a sequence of idealised experiments with a global primitive equation model. The zonally averaged flow is prescribed and both realistic and idealised orography and heating are used. There is some similarity between the responses to the two forcings when applied separately. The upper tropospheric Tibetan anticyclone is predominantly forced by the heating but also weakly by the orography. Below this, both forcings tend to give air descending in an equatorward anticyclonic circulation down the isentropes to the west and rising in a similar poleward circulation to the east. However the heating-only response has a strong ascending southwesterly flow that is guided around the south and south-east of the orography when it is included. On the northern side, the westerly flow over the orography gives ascent on the upslope and descent on the downslope. It is found that heating over the Plateau leads to a potential vorticity (PV) minimum and that if it is sufficiently strong the flow is unstable, producing a quasi-biweekly oscillation. During this oscillation the Tibetan anticyclone changes between a single centre over the southwestern side of the Plateau and a split/double structure with centres over China and the Middle East. These characteristics are similar to observed variability in the region. Associated with this quasi-biweekly oscillation are significant variations in the strength of the ascent over the Plateau and the Rossby wave pattern over the North Pacific. The origin of the variability is instability associated with the zonally extended potential vorticity PV minimum on a θ-surface, as proposed by Hsu and Plumb (2000). This minimum is due to the tendency to reduce the PV above the heating over the Plateau and to advection by the consequent anticyclone of high PV around from the east and low PV to the west. The deep convection to the south and southeast of the Plateau tends to suppress the quasi-biweekly oscillation because the low PV produced above it acts to reduce the meridional PV gradient reversal. The occurrence of the oscillation depends on the relative magnitude of the heating in the two regions.

Item Type:Article
Divisions:Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:869
Publisher:Meteorological Society of Japan

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation