Allen M R, Fuglestvedt J S, Shine K P, Reisinger A, Pierrehumbert R T and Forster P M 2016 New use of global warming potentials to compare cumulative and short-lived climate pollutants Nat. Clim. Chang. 6 773–6
Allen M R, Shine K P, Fuglestvedt J S, Millar R J, Cain M, Frame D J and Macey A H 2018 A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation npj Clim. Atmos. Sci. 1
Azar C and Johansson D J A 2012 On the relationship between metrics to compare greenhouse gases the case of IGTP, GWP and SGTP Earth Syst. Dyn. 3 139–47
Boucher O and Reddy M S 2008 Climate trade-off between black carbon and carbon dioxide emissions Energy Policy 36 193–200
Collins W J, Webber C P, Cox P M, Huntingford C, Lowe J, Sitch S, Chadburn S E, Comyn-Platt E, Harper A B, Hayman G and Powell T 2018 Increased importance of methane reduction for a 1.5 degree target Environ. Res. Lett. 13
Etminan M, Myhre G, Highwood E J and Shine K P 2016 Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing Geophys. Res. Lett. 43 12,614-12,623
Forster P, Huppmann D, Kriegler E, Mundaca L, Smith C, Rogelj J, Séférian R, Shindell D, Jiang K, Fifita S, Forster P, Ginzburg V, Handa C, Kheshgi H, Kobayashi S, Kriegler E, Mundaca L, Séférian R and Vilariño M V 2018 Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable Development Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, ed V Masson-Delmotte, P Zhai, H-O Pörtner, D Roberts, J Skea, P R Shukla, A Pirani, W Moufouma-Okia, C Péan, R Pidcock, S Connors, J B R Matthews, Y Chen, X Zhou, M I Gomis, E Lonnoy, T Maycock, M Tignor and T Waterfield (In Press) Online: https://www.ipcc.ch/sr15
Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey D W, Haywood J, Lean J, Lowe D C, Myhre G, Nganga J, Prinn R, Raga G, Schulz M and Van Dorland R 2007 Changes in Atmospheric Constituents and in Radiative Forcing Climate Change 2007. The Physical Science Basis ed S Solomon, D Qin, M Manning, Z Chen, M Marquis, K B Averyt, M Tignor and H L Miller (United Kingdom: Cambridge University Press) Online: http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter2.pdf
Fuglestvedt J, Rogelj J, Millar R J, Allen M, Boucher O, Cain M, Forster P M, Kriegler E and Shindell D 2018 Implications of possible interpretations of’greenhouse gas balance’ in the Paris Agreement Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376
Fuglestvedt J S, Berntsen T K, Godal O, Sausen R, Shine K P and Skodvin T 2003 Metrics of climate change: Assessing radiative forcing and emission indices Clim. Change 58 267–331
Gasser T, Peters G P, Fuglestvedt J S, Collins W J, Shindell D T and Ciais P 2017 Accounting for the climate–carbon feedback in emission metric Earth Syst. Dyn. 8 235–53
Geoffroy O, Saint-martin D, Olivié D J L, Voldoire A, Bellon G and Tytéca S 2013 Transient climate response in a two-layer energy-balance model. Part I: Analytical solution and parameter calibration using CMIP5 AOGCM experiments J. Clim. 26 1841–57 Online: https://doi.org/10.1175/JCLI-D-12-00195.1
Gillett N P and Matthews H D 2010 Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases Environ. Res. Lett. 5
Gregory J M, Jones C D, Cadule P and Friedlingstein P 2009 Quantifying carbon cycle feedbacks J. Clim. 22 5232–50
IPCC 2018 Short-Lived Climate Forcers (SLCF) Report of the Expert Meeting on Short-Lived Climate Forcers ed W Blain, D., Calvo Buendia, E., Fuglestvedt, J.S., Gómez, D., Masson-Delmotte, V., Tanabe, K., Yassaa, N., Zhai, P., Kranjc, A., Jamsranjav, B., Ngarize., S., Pyrozhenko, Y., Shermanau, P., Connors, S. and Moufouma-Okia (IGES) Online: http://www.ipcc-nggip.iges.or.jp
Joos F, Roth R, Fuglestvedt J S, Peters G P, Enting I G, Von Bloh W, Brovkin V, Burke E J, Eby M, Edwards N R, Friedrich T, Frölicher T L, Halloran P R, Holden P B, Jones C, Kleinen T, Mackenzie F T, Matsumoto K, Meinshausen M, Plattner G-K, Reisinger A, Segschneider J, Shaffer G, Steinacher M, Strassmann K, Tanaka K, Timmermann A and Weaver A J 2013 Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: A multi-model analysis Atmos. Chem. Phys. 13 2793–825
Kandlikar M 1996 Indices for comparing greenhouse gas emissions: Integrating science and economics Energy Econ. 18 265–81
Kandlikar M 1995 The relative role of trace gas emissions in greenhouse abatement policies Energy Policy 23 879–83
Millar R J, Fuglestvedt J S, Friedlingstein P, Rogelj J, Grubb M J, Matthews H D, Skeie R B, Forster P M, Frame D J and Allen M R 2017 Emission budgets and pathways consistent with limiting warming to 1.5 °c Nat. Geosci. 10 741–7
Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T and Zhang H 2013 Anthropogenic and Natural Radiative Forcing Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change vol 9781107057, ed T F Stocker, D Qin, G-K Plattner, M Tignor, S K Allen, J Boschung, A Nauels, Y Xia, V Bex and P M Midgley (Cambridge, United Kingdom and New York, NY, USA, United Kingdom and New York, NY, USA: Cambridge University Press) pp 659–740
New Zealand 2019 Climate Change Response (Zero Carbon) Amendment Bill http://www.legislation.govt.nz/bill/government/2019/0136/latest/096be8ed8190014b.pdf
Olivié D J L and Peters G P 2013 Variation in emission metrics due to variation in CO2 and temperature impulse response functions Earth Syst. Dyn. 4 267–86
Peters G P, Aamaas B, T. Lund M, Solli C and Fuglestvedt J S 2011 Alternative “global warming” metrics in life cycle assessment: A case study with existing transportation data Environ. Sci. Technol. 45 8633–41
Pierrehumbert R T 2014 Short-Lived Climate Pollution Annu. Rev. Earth Planet. Sci. 42 341–79
Schleussner C-F, Nauels A, Schaeffer M, Hare W and Rogelj J 2019 Inconsistencies when applying novel metrics for emissions accounting to the Paris Agreement Environ. Res. Lett. Online: http://iopscience.iop.org/article/10.1088/1748-9326/ab56e7
Shine K P 2009 The global warming potential—the need for an interdisciplinary retrial Clim. Change 96 467–72
Shine K P, Berntsen T K, Fuglestvedt J S, Skeie R B and Stuber N 2007 Comparing the climate effect of emissions of short- and long-lived climate agents Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365 1903–14
Shine K P, Fuglestvedt J S, Hailemariam K and Stuber N 2005 Alternatives to the Global Warming Potential for comparing climate impacts of emissions of greenhouse gases Clim. Change 68 281–302
Smith S M, Lowe J A, Bowerman N H A, Gohar L K, Huntingford C and Allen M R 2012 Equivalence of greenhouse-gas emissions for peak temperature limits Nat. Clim. Chang. 2 535–8
Sterner E, Johansson D J A and Azar C 2014 Emission metrics and sea level rise Clim. Change 127 335–51
Tanaka K and O’Neill B C 2018 The Paris Agreement zero-emissions goal is not always consistent with the 1.5 °c and 2 °c temperature targets Nat. Clim. Chang.
Weitzman M L 2012 GHG Targets as Insurance Against Catastrophic Climate Damages J. Public Econ. Theory 14 221–44
WMO (World Meteorological Organization) 2018 SCIENTIFIC ASSESSMENT OF OZONE DEPLETION: 2018 World Meteorological Organization Global Ozone Research and Monitoring Project-Report No. 58 World Meteorological Organization United Nations Environment Programme National Oceanic and Atmospheric Administrat (Geneva) Online: http://ozone.unep.org/science/assessment/sap