[1] Badimon L, Vilahur G. Thrombosis formation on atherosclerotic lesions and plaque rupture. J Intern Med 2014. 276:618–32.
[2] Badimon L, Padró T, Vilahur G. Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease. Eur Heart J Acute Cardiovasc Care 2012. 1:60–74.
[3] Passam FH, Giannakopoulos B, Mirarabshahi P, Krilis SA. Molecular pathophysiology of the antiphospholipid syndrome: the role of oxidative post-translational modification of beta 2 glycoprotein I. J Thromb Haemost 2011. 9 Suppl 1:275–82.
[4] Lansdown AB, Mirastschijski U, Stubbs N, Scanlon E, Agren MS. Zinc in wound healing: theoretical, experimental, and clinical aspects. Wound Repair Regen 2007. 15:2–16.
[5] Lansdown AB. Zinc in the healing wound. Lancet 1996. 347:706–7.
[6] Milne DB, Ralston NV, Wallwork JC. Zinc content of cellular components of blood: methods for cell separation and analysis evaluated. Clin Chem 1985. 31:65–9.
[7] Whitehouse RC, Prasad AS, Rabbani PI, Cossack ZT. Zinc in plasma, neutrophils, lymphocytes, and erythrocytes as determined by flameless atomic absorption spectrophotometry. Clin Chem 1982. 28:475–80.
[8] Gordon PR, Woodruff CW, Anderson HL, O’Dell BL. Effect of acute zinc deprivation on plasma zinc and platelet aggregation in adult males. Am J Clin Nutr 1982. 35:113–9.
[9] Emery MP, O’Dell BL. Low zinc status in rats impairs calcium uptake and aggregation of platelets stimulated by fluoride. Proc Soc Exp Biol Med Exp Biol Med N Y N 1993. 203:480–4.
[10] Taylor KA, Pugh N. The contribution of zinc to platelet behaviour during haemostasis and thrombosis. Metallomics 2016. 8:144–55.
[11] Watson B, White N, Taylor K, Howes J-M, Malcor J-D, Bihan D, Sage, SO, Farndale, RW and Pugh N. Zinc is a Transmembrane Agonist that Induces Platelet Activation in a Tyrosine Phosphorylation-Dependent Manner. Metallomics 2016. 8:91–100.
[12] Ahmed NS, Lopes Pires ME, Taylor KA, Pugh N. Agonist-Evoked Increases in Intra-Platelet Zinc Couple to Functional Responses. Thromb Haemost 2019.119:128–39.
[13] Yang X, Li Y, Li Y, Ren X, Zhang X, Hu D, Gao, Y, Zing, Y and Shang, H. Oxidative Stress-Mediated Atherosclerosis: Mechanisms and Therapies. Front Physiol 2017. 8:600.
[14] He W, Liu Y, Wamer WG, Yin J-J. Electron spin resonance spectroscopy for the study of nanomaterial-mediated generation of reactive oxygen species. J Food Drug Anal 2014. 22:49–63.
[15] Pietraforte D, Vona R, Marchesi A, de Jacobis IT, Villani A, Del Principe D, and Straface, E. Redox control of platelet functions in physiology and pathophysiology. Antioxid Redox Signal 2014. 21:177–93.
[16] Qiao J, Arthur JF, Gardiner EE, Andrews RK, Zeng L, Xu K. Regulation of platelet activation and thrombus formation by reactive oxygen species. Redox Biol 2018. 14:126–30.
[17] Kalyanaraman B. Teaching the basics of redox biology to medical and graduate students: Oxidants, antioxidants and disease mechanisms. Redox Biol 2013. 1:244–57.
[18] Delaney MK, Kim K, Estevez B, Xu Z, Stojanovic-Terpo A, Shen B, Ushio-Fukai M, Cho J, and Du X. Differential Roles of the NADPH-Oxidase 1 and 2 in Platelet Activation and Thrombosis. Arterioscler Thromb Vasc Biol 2016. 36:846–54.
[19] Vara D, Cifuentes-Pagano E, Pagano PJ, Pula G. A novel combinatorial technique for simultaneous quantification of oxygen radicals and aggregation reveals unexpected redox patterns in the activation of platelets by different physiopathological stimuli. Haematologica 2019. 104:1879–91.
[20] Chen Q, Wang Q, Zhu J, Xiao Q, Zhang L. Reactive oxygen species: key regulators in vascular health and diseases. Br J Pharmacol 2018. 175:1279–92.
[21] Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. Oxford University Press; 2015.
[22] Klaunig JE, Kamendulis LM, Hocevar BA. Oxidative stress and oxidative damage in carcinogenesis. Toxicol Pathol 2010. 38:96–109.
[23] Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 2004. 266:37–56.
[24] Noh KM, Koh JY. Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes. J Neurosci Off J Soc Neurosci 2000. 20:RC111.
[25] Aimo L, Cherr GN, Oteiza PI. Low extracellular zinc increases neuronal oxidant production through nadph oxidase and nitric oxide synthase activation. Free Radic Biol Med 2010. 48:1577–87.
[26] Matsunaga Y, Kawai Y, Kohda Y, Gemba M. Involvement of activation of NADPH oxidase and extracellular signal-regulated kinase (ERK) in renal cell injury induced by zinc. J Toxicol Sci 2005. 30:135–44.
[27] Patrushev N, Seidel-Rogol B, Salazar G. Angiotensin II requires zinc and downregulation of the zinc transporters ZnT3 and ZnT10 to induce senescence of vascular smooth muscle cells. PloS One 2012. 7:e33211.
[28] Salazar G, Huang J, Feresin RG, Zhao Y, Griendling KK. Zinc regulates Nox1 expression through a NF-κB and mitochondrial ROS dependent mechanism to induce senescence of vascular smooth muscle cells. Free Radic Biol Med 2017. 108:225–35.
[29] Sensi SL, Yin HZ, Weiss JH. AMPA/kainate receptor-triggered Zn2+ entry into cortical neurons induces mitochondrial Zn2+ uptake and persistent mitochondrial dysfunction. Eur J Neurosci 2000. 12:3813–8.
[30] Dineley KE, Richards LL, Votyakova TV, Reynolds IJ. Zinc causes loss of membrane potential and elevates reactive oxygen species in rat brain mitochondria. Mitochondrion 2005. 5:55–65.
[31] Clausen A, McClanahan T, Ji SG, Weiss JH. Mechanisms of rapid reactive oxygen species generation in response to cytosolic Ca2+ or Zn2+ loads in cortical neurons. PloS One 2013. 8:e83347.
[32] Vande Voorde J, Ackermann T, Pfetzer N, Sumpton D, Mackay G, Kalna G, Nixon C, Blyth K, Gottlieb E, and Tardito S. Improving the metabolic fidelity of cancer models with a physiological cell culture medium. Sci Adv 2019. 5:eaau7314.
[33] Gibbins JM. Techniques for analysis of proteins by SDS-polyacrylamide gel electrophoresis and Western blotting. Methods Mol Biol 2004. 273:139–52.
[34] Palomo I, Toro C, Alarcón M. The role of platelets in the pathophysiology of atherosclerosis. Mol Med Rep 2008. 1:179–84.
[35] Lopes Pires ME, Clarke SR, Marcondes S, Gibbins JM. Lipopolysaccharide potentiates platelet responses via toll-like receptor 4-stimulated Akt-Erk-PLA2 signalling. PloS One 2017. 12:e0186981.
[36] Trybulec M, Kowalska MA, McLane MA, Silver L, Lu W, Niewiarowski S. Exposure of platelet fibrinogen receptors by zinc ions: role of protein kinase C. Proc Soc Exp Biol Med 1993. 203:108–16.
[37] Aquilano K, Baldelli S, Ciriolo MR. Glutathione: new roles in redox signaling for an old antioxidant. Front Pharmacol 2014. 5:196.
[38] Oliveira PVS, Laurindo FRM. Implications of plasma thiol redox in disease. Clin Sci 2018.132:1257–80.
[39] Marx G, Korner G, Mou X, Gorodetsky R. Packaging zinc, fibrinogen, and factor XIII in platelet alpha-granules. J Cell Physiol 1993. 156:437–42.
[40] Bolsover SR, Kater SB, Guthrie PB. Spatial gradients of cytosolic calcium concentration in neurones during paradoxical activation by calcium. Cell Calcium 1996. 20:373–9.
[41] Schnetkamp PP, Li XB, Basu DK, Szerencsei RT. Regulation of free cytosolic Ca2+ concentration in the outer segments of bovine retinal rods by Na-Ca-K exchange measured with fluo-3. I. Efficiency of transport and interactions between cations. J Biol Chem 1991. 266:22975–82.
[42] Fujikawa K, Fukumori R, Nakamura S, Kutsukake T, Takarada T, Yoneda Y. Potential interactions of calcium-sensitive reagents with zinc ion in different cultured cells. PloS One 2015. 10:e0127421.
[43] Aiba I, West AK, Sheline CT, Shuttleworth CW. Intracellular dialysis disrupts Zn2+ dynamics and enables selective detection of Zn2+ influx in brain slice preparations. J Neurochem 2013. 125:822–31.
[44] Przygodzki T, Sokal A, Bryszewska M. Calcium ionophore A23187 action on cardiac myocytes is accompanied by enhanced production of reactive oxygen species. Biochim Biophys Acta BBA - Mol Basis Dis 2005. 1740:481–8.
[45] El-Benna J, Dang PM-C, Gougerot-Pocidalo MA, Marie JC, Braut-Boucher F. p47phox, the phagocyte NADPH oxidase/NOX2 organizer: structure, phosphorylation and implication in diseases. Exp Mol Med 2009. 41:217–25.
[46] DeLeo FR, Quinn MT. Assembly of the phagocyte NADPH oxidase: molecular interaction of oxidase proteins. J Leukoc Biol 1996. 60:677–91.
[47] Nimmanon T, Ziliotto S, Morris S, Flanagan L, Taylor KM. Phosphorylation of zinc channel ZIP7 drives MAPK, PI3K and mTOR growth and proliferation signalling. Met Integr Biometal Sci 2017. 9:471–81.
[48] Ohashi K, Nagata Y, Wada E, Zammit PS, Shiozuka M, Matsuda R. Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade. Exp Cell Res 2015. 333:228–37.
[49] Moriyama M, Fujitsuka S, Kawabe K, Takano K, Nakamura Y. Zinc Potentiates Lipopolysaccharide-induced Nitric Oxide Production in Cultured Primary Rat Astrocytes. Neurochem Res 2018. 43:363–74.
[50] Freedman JE. Oxidative stress and platelets. Arterioscler Thromb Vasc Biol 2008. 28:s11-16.
[51] Lopes-Pires ME, Casarin AL, Pereira-Cunha FG, Lorand-Metze I, Antunes E, Marcondes S. Lipopolysaccharide treatment reduces rat platelet aggregation independent of intracellular reactive-oxygen species generation. Platelets 2012. 23:195–201.
[52] Bishop GM, Dringen R, Robinson SR. Zinc stimulates the production of toxic reactive oxygen species (ROS) and inhibits glutathione reductase in astrocytes. Free Radic Biol Med 2007. 42:1222–30.
[53] Guo D, Bi H, Liu B, Wu Q, Wang D, Cui Y. Reactive oxygen species-induced cytotoxic effects of zinc oxide nanoparticles in rat retinal ganglion cells. Toxicol Vitro Int J Publ Assoc BIBRA 2013. 27:731–8.
[54] Yamasaki S, Sakata-Sogawa K, Hasegawa A, Suzuki T, Kabu K, Sato E, Kurosaki T, Yamashita S, Tokunaga M, Nishida K, Hirano T. Zinc is a novel intracellular second messenger. J Cell Biol 2007. 177:637–45.
[55] Haase H, Maret W. Fluctuations of cellular, available zinc modulate insulin signaling via inhibition of protein tyrosine phosphatases. J Trace Elem Med Biol 2005. 19:37–42.
[56] Görlach A, Bertram K, Hudecova S, Krizanova O. Calcium and ROS: A mutual interplay. Redox Biol 2015. 6:260–71.
[57] Ahmed S, Kozma R, Lee J, Monfries C, Harden N, Lim L. The cysteine-rich domain of human proteins, neuronal chimaerin, protein kinase C and diacylglycerol kinase binds zinc. Evidence for the involvement of a zinc-dependent structure in phorbol ester binding. Biochem J 1991. 280 (Pt 1):233–41.
[58] Ashfaq S, Abramson JL, Jones DP, Rhodes SD, Weintraub WS, Hooper WC, Vaccarino V, Harrison DG, and Quyyumi AA. The relationship between plasma levels of oxidized and reduced thiols and early atherosclerosis in healthy adults. J Am Coll Cardiol 2006. 47:1005–11.
[59] Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, Chakraborty S, and Dhama K. Oxidative stress, prooxidants, and antioxidants: the interplay. BioMed Res Int 2014. 2014:761264.
[60] Vara D, Campanella M, Pula G. The novel NOX inhibitor 2-acetylphenothiazine impairs collagen-dependent thrombus formation in a GPVI-dependent manner. Br J Pharmacol 2013. 168:212–24.
[61] Garcia-Souza LF, Oliveira MF. Mitochondria: biological roles in platelet physiology and pathology. Int J Biochem Cell Biol 2014. 50:156–60.
[62] Li Z, Xi X, Du X. A mitogen-activated protein kinase-dependent signaling pathway in the activation of platelet integrin alpha IIbbeta3. J Biol Chem 2001. 276:42226–32.
[63] Kyriakis JM, Avruch J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev 2012. 92:689–737.
[64] Azriel-Tamir H, Sharir H, Schwartz B, Hershfinkel M. Extracellular zinc triggers ERK-dependent activation of Na+/H+ exchange in colonocytes mediated by the zinc-sensing receptor. J Biol Chem 2004. 279:51804–16.
[65] Hönscheid A, Dubben S, Rink L, Haase H. Zinc differentially regulates mitogen-activated protein kinases in human T cells. J Nutr Biochem 2012. 23:18–26.
[66] Zhang, J, Salojin, KV, Gao, JX, Cameron, MJ, Bergerot, I, Delovitch, TL. p38 mitogen-activated protein kinase mediates signal integration of TCR/CD28 costimulation in primary murine T cells. J Immunol 1999. 162:3819–29.
[67] Koeberle A, Pergola C, Shindou H, Koeberle SC, Shimizu T, Laufer SA, and Werz O. Role of p38 mitogen-activated protein kinase in linking stearoyl-CoA desaturase-1 activity with endoplasmic reticulum homeostasis. FASEB J 2015. 29:2439–49.
[68] Zhong L, Shu W, Dai W, Gao B, Xiong S. Reactive Oxygen Species-Mediated c-Jun NH2-Terminal Kinase Activation Contributes to Hepatitis B Virus X Protein-Induced Autophagy via Regulation of the Beclin-1/Bcl-2 Interaction. J Virol 2017. 91. 15: pii: e00001-17
[69] Choi EK, Yeo J-S, Park CY, Na H in, Lim J a, Lee J-E, Hong SW, Park SS, Lim DG, and Kwak KH. Inhibition of reactive oxygen species downregulates the MAPK pathway in rat spinal cord after limb ischemia reperfusion injury. Int J Surg 2015. 22:74–8.
[70] Pandey D, Fulton DJR. Molecular regulation of NADPH oxidase 5 via the MAPK pathway. Am J Physiol-Heart Circ Physiol 2011. 300:H1336–44.
[71] Khan MA, Farahvash A, Douda DN, Licht J-C, Grasemann H, Sweezey N,and Palaniyar, N. JNK Activation Turns on LPS- and Gram-Negative Bacteria-Induced NADPH Oxidase-Dependent Suicidal NETosis. Sci Rep 2017;7(1):3409
[72] Flaumenhaft R, Dilks JR, Rozenvayn N, Monahan-Earley RA, Feng D, Dvorak AM. The actin cytoskeleton differentially regulates platelet alpha-granule and dense-granule secretion. Blood 2005;105:3879–87.