1] A.P. Bye, A.J. Unsworth, J.M. Gibbins, Platelet signaling: a complex interplay between inhibitory and activatory networks, J Thromb Haemost 14(5) (2016) 918-30. 
[2] S.P. Jackson, Arterial thrombosis—insidious, unpredictable and deadly, Nature medicine 17(11) (2011) 1423-1436. 
[3] J. Qiao, J.F. Arthur, E.E. Gardiner, R.K. Andrews, L. Zeng, K. Xu, Regulation of platelet activation and thrombus formation by reactive oxygen species, Redox Biol 14 (2018) 126-130. 
[4] M.K. Delaney, K. Kim, B. Estevez, Z. Xu, A. Stojanovic-Terpo, B. Shen, M. Ushio-Fukai, J. Cho, X. Du, Differential Roles of the NADPH-Oxidase 1 and 2 in Platelet Activation and Thrombosis,  Arterioscler Thromb Vasc Biol 36(5) (2016) 846-54. 
[5] T. Seno, N. Inoue, D. Gao, M. Okuda, Y. Sumi, K. Matsui, S. Yamada, K.I. Hirata, S. Kawashima,  R. Tawa, S. Imajoh-Ohmi, H. Sakurai, M. Yokoyama, Involvement of NADH/NADPH oxidase in human platelet ROS production, Thromb Res 103(5) (2001) 399-409. 
[6] K.K. Griendling, C.A. Minieri, J.D. Ollerenshaw, R.W. Alexander, Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells, Circ Res 74(6) (1994) 1141-8. 
[7] U. Bayraktutan, L. Blayney, A.M. Shah, Molecular characterization and localization of the NAD(P)H oxidase components gp91-phox and p22-phox in endothelial cells, Arterioscler Thromb Vasc Biol 20(8) (2000) 1903-11. 
[8] M.K. Delaney, K. Kim, B. Estevez, Z. Xu, A. Stojanovic-Terpo, B. Shen, M. Ushio-Fukai, J. Cho, X. Du, Differential roles of the NADPH-oxidase 1 and 2 in platelet activation and thrombosis,  Arteriosclerosis, thrombosis, and vascular biology 36(5) (2016) 846-854. 
[9] D. Vara, E. Cifuentes-Pagano, P.J. Pagano, G. Pula, A novel combinatorial technique for simultaneous quantification of oxygen radicals and aggregation reveals unexpected redox patterns in the activation of platelets by different physiopathological stimuli, Haematologica 104(9) (2019) 1879- 1891. 
[10] D. Vara, R.K. Mailer, A. Tarafdar, N. Wolska, M. Heestermans, S. Konrath, M. Spaeth, T. Renné, K. Schröder, G. Pula, NADPH Oxidases Are Required for Full Platelet Activation In Vitro and Thrombosis In Vivo but Dispensable for Plasma Coagulation and Hemostasis, Arteriosclerosis, Thrombosis, and Vascular Biology (2020) A TVBAHA. 120.315565. 
[11] T. Walsh, M. Berndt, N. Carrim, J. Cowman, D. Kenny, P. Metharom, The role of Nox1 and Nox2 in GPVI-dependent platelet activation and thrombus formation, Redox biology 2 (2014) 178-186. 
[12] V.K. Sonkar, R. Kumar, M. Jensen, B.A. Wagner, A.A. Sharathkumar, F.J. Miller, M. Fasano, S.R. Lentz, G.R. Buettner, S. Dayal, Nox2 NADPH oxidase is dispensable for platelet activation or arterial thrombosis in mice, Blood advances 3(8) (2019) 1272-1284. 
[13] B.J. Benedikter, A.R. Weseler, E.F. Wouters, P.H. Savelkoul, G.G. Rohde, F.R. Stassen, Redox- dependent thiol modifications: implications for the release of extracellular vesicles, Cellular and Molecular Life Sciences 75(13) (2018) 2321-2337. 
[14] S.R. Thom, V.M. Bhopale, M. Yang, Neutrophils generate microparticles during exposure to inert gases due to cytoskeletal oxidative stress, Journal of Biological Chemistry 289(27) (2014) 18831-18845. 
[15] G. Raposo, W. Stoorvogel, Extracellular vesicles: exosomes, microvesicles, and friends, Journal of Cell Biology 200(4) (2013) 373-383. 
[16] M. Chimen, A. Evryviadou, C. Box, M. Harrison, J. Hazeldine, L. Dib, S. Kuravi, H. Payne, J. Price, D. Kavanagh, Appropriation of GPIb from platelet-derived extracellular vesicles supports monocyte recruitment in systemic inflammation, (2019). 
[17] M. Ohtsuka, K.-i. Sasaki, T. Ueno, R. Seki, T. Nakayoshi, H. Koiwaya, Y. Toyama, S. Yokoyama, Y. Mitsutake, H. Chibana, Platelet-derived microparticles augment the adhesion and neovascularization capacities of circulating angiogenic cells obtained from atherosclerotic patients, Atherosclerosis 227(2) (2013) 275-282. 
[18] D. Varon, E. Shai, Platelets and their microparticles as key players in pathophysiological responses, Journal of Thrombosis and Haemostasis 13 (2015) S40-S46. 
[19] S. Li, J. Wei, C. Zhang, X. Li, W. Meng, X. Mo, Q. Zhang, Q. Liu, K. Ren, R. Du, Cell-derived microparticles in patients with type 2 diabetes mellitus: a systematic review and meta-analysis, Cellular Physiology and Biochemistry 39(6) (2016) 2439-2450. 
[20] L.M. Biasucci, I. Porto, L. Di Vito, G.L. De Maria, A.M. Leone, G. Tinelli, A. Tritarelli, G. Di Rocco, F. Snider, M.C. Capogrossi, Differences in microparticle release in patients with acute coronary syndrome and stable angina, Circulation Journal 76(9) (2012) 2174-2182. 
[21] G. Turturici, R. Tinnirello, G. Sconzo, F. Geraci, Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages, American Journal of Physiology-Cell Physiology 306(7) (2014) C621-C633. 
[22] P. Ferreira, E. Bozbas, D. Tannetta, N. Alroqaiba, R. Zhou, J. Crawley, J. Gibbins, C. Jones, J. Ahnstrom, P. Yaqoob, Mode of induction of platelet-derived extracellular vesicles is a critical determinant of their phenotype and function, Scientific Reports (2020). 
[23] C. Preußer, L.-H. Hung, T. Schneider, S. Schreiner, M. Hardt, A. Moebus, S. Santoso, A.  Bindereif, Selective release of circRNAs in platelet-derived extracellular vesicles, Journal of extracellular vesicles 7(1) (2018) 1424473. 
[24] G. Gavazzi, B. Banfi, C. Deffert, L. Fiette, M. Schappi, F. Herrmann, K.H. Krause, Decreased blood pressure in NOX1-deficient mice, FEBS Lett 580(2) (2006) 497-504. 
[25] F. Augsburger, A. Filippova, D. Rasti, T. Seredenina, M. Lam, G. Maghzal, Z. Mahiout, P. Jansen-Dürr, U.G. Knaus, J. Doroshow, Pharmacological characterization of the seven human NOX isoforms and their inhibitors, Redox biology 26 (2019) 101272. 
[26] P. Ferreira, E. Bozbas, S. Tannetta, N. Alroqaiba, R. Zhou, J. Crawley, J. Gibbins, C. Jones, J. Ahnström, P. Yaqoob, Mode of induction of platelet-derived extracellular vesicles is a critical determinant of their phenotype and function, Scientific reports 10(1) (2020) 1-8. 
[27] D. Gianni, N. Taulet, H. Zhang, C. DerMardirossian, J. Kister, L. Martinez, W.R. Roush, S.J. Brown, G.M. Bokoch, H. Rosen, A novel and specific NADPH oxidase-1 (Nox1) small-molecule inhibitor blocks the formation of functional invadopodia in human colon cancer cells, ACS Chem Biol 377  5(10) (2010) 981-93. 
[28] D. Vara, A. Tarafdar, M. Celikag, D. Patinha, C.E. Gulacsy, E. Hounslea, Z. Warren, B. Ferreira, M.P. Koeners, L. Caggiano, NADPH oxidase 1 is a novel pharmacological target for the development of an antiplatelet drug without bleeding side effects, The FASEB Journal (2020). 
[29] L. Kilpinen, U. Impola, L. Sankkila, I. Ritamo, M. Aatonen, S. Kilpinen, J. Tuimala, L. Valmu, J. Levijoki, P. Finckenberg, Extracellular membrane vesicles from umbilical cord blood-derived MSC protect against ischemic acute kidney injury, a feature that is lost after inflammatory conditioning, Journal of extracellular vesicles 2(1) (2013) 21927. 
[30] U. Maitra, N. Singh, L. Gan, L. Ringwood, L. Li, IRAK-1 contributes to LPS-induced ROS generation in macrophages by inducing NOX-1 transcription, Rac1 activation, and suppressing the expression of anti-oxidative enzymes, Journal of Biological Chemistry (2009) jbc. M109. 059501. 
[31] A.S. Weyrich, H. Schwertz, L.W. Kraiss, G.A. Zimmerman, Protein synthesis by platelets: historical and new perspectives, Journal of thrombosis and haemostasis 7(2) (2009) 241-246.
[32] A.S. Leroyer, T.G. Ebrahimian, C. Cochain, A. Récalde, O. Blanc-Brude, B. Mees, J. Vilar, A. Tedgui, B.I. Levy, G. Chimini, Microparticles from ischemic muscle promotes postnatal vasculogenesis, Circulation 119(21) (2009) 2808-2817.