1. Bye, A. P., Unsworth, A. J. & Gibbins, J. M. Platelet signaling: A complex interplay between inhibitory and activatory networks. Journal of Thrombosis and Haemostasis vol. 14 918–930 (2016).
2. Söhl, G. & Willecke, K. Gap junctions and the connexin protein family. Cardiovascular Research vol. 62 228–232 (2004).
3. Kumar, N. M. & Gilula, N. B. The gap junction communication channel. Cell vol. 84 381–388 (1996).
4. Bevans, C. G., Kordel, M., Rhee, S. K. & Harris, A. L. Isoform composition of connexin channels determines selectivity among second messengers and uncharged molecules. J. Biol. Chem. 273, 2808–2816 (1998).
5. Angelillo-Scherrer, A. et al. Connexin 37 limits thrombus propensity by downregulating platelet reactivity. Circulation 124, 930–939 (2011).
6. Vaiyapuri, S. et al. Connexin40 regulates platelet function. Nat. Commun. 4, (2013).
7. Sahli, K. et al. Structural, Functional and Mechanistic Insights Uncover the Fundamental Role of
Orphan Connexin62 in Platelets. Blood (2020) doi:10.1182/blood.2019004575.
8. Lohman, A. W. & Isakson, B. E. Differentiating connexin hemichannels and pannexin channels in
cellular ATP release. in FEBS Letters vol. 588 1379–1388 (Elsevier, 2014).
9. Panchina, Y. et al. A ubiquitous family of putative gap junction molecules [2]. Current Biology vol.
10 (2000).
10. Bruzzone, R., Hormuzdi, S. G., Barbe, M. T., Herb, A. & Monyer, H. Pannexins, a family of gap
junction proteins expressed in brain. Proc. Natl. Acad. Sci. U. S. A. 100, 13644–13649 (2003).
11. Boassa, D., Qiu, F., Dahl, G. & Sosinsky, G. Trafficking dynamics of glycosylated pannexin1
proteins. Cell Commun. Adhes. 15, 119–132 (2008).
12. Qu, R. et al. Cryo-EM structure of human heptameric Pannexin 1 channel. Cell Research vol. 30
446–448 (2020).
13. Michalski, K. et al. The Cryo-EM structure of a pannexin 1 reveals unique motifs for ion selection
and inhibition. Elife 9, (2020).
14. Yonashiro, R. et al. Mutant SOD1 and Attenuates Mutant SOD1-induced Reactive Oxygen Species
Generation. Mol. Biol. Cell 20, 4524–4530 (2009).
15. Sosinsky, G. E. et al. Pannexin channels are not gap junction hemichannels. Channels vol. 5 193
(2011).
16. Ma, W. et al. Pannexin 1 forms an anion-selective channel. Pflugers Arch. Eur. J. Physiol. 463, 585–592 (2012).
17. Wright, J. R., Amisten, S., Goodall, A. H. & Mahaut-Smith, M. P. Transcriptomic analysis of the ion channelome of human platelets and megakaryocytic cell lines. Thromb. Haemost. 116, 272–284 (2016).
18. Vaiyapuri, S. et al. Gap junctions and connexin hemichannels underpin hemostasis and thrombosis. Circulation 125, 2479–2491 (2012).
19. Burkhart, J. M. et al. The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood 120, (2012).
20. Lewandrowski, U. et al. Platelet membrane proteomics: A novel repository for functional research. Blood 114, (2009).
21. Taylor, K. A., Wright, J. R., Vial, C., Evans, R. J. & Mahaut-Smith, M. P. Amplification of human platelet activation by surface pannexin-1 channels. J. Thromb. Haemost. 12, 987–998 (2014).
22. Molica, F. et al. Functional role of a polymorphism in the pannexin1 gene in collagen induced platelet aggregation. Thromb. Haemost. 114, 325–336 (2015).
23. Koval, M., Molina, S. A. & Burt, J. M. Mix and match: Investigating heteromeric and heterotypic gap junction channels in model systems and native tissues. in FEBS Letters vol. 588 1193–1204 (Elsevier, 2014).
24. Chao, F. C., Shepro, D., Tullis, J. L., Belamarich, F. A. & Curby, W. A. Similarities between platelet contraction and cellular motility during mitosis: role of platelet microtubules in clot retraction. J. Cell Sci. 20, (1976).
25. Molica, F. et al. Selective inhibition of Panx1 channels decreases hemostasis and thrombosis in vivo. Thromb. Res. 183, 56–62 (2019).
26. Stierlin, F. B., Molica, F., Reny, J. L., Kwak, B. R. & Fontana, P. Pannexin1 single nucleotide polymorphism and platelet reactivity in a Cohort of cardiovascular patients. Cell Commun. Adhes. 23, 11–15 (2017).
27. Locovei, S., Bao, L. & Dahl, G. Pannexin 1 in erythrocytes: Function without a gap. Proc. Natl. Acad. Sci. U. S. A. 103, 7655–7659 (2006).
28. Goodenough, D. A. & Paul, D. L. Beyond the gap: Functions of unpaired connexon channels. Nature Reviews Molecular Cell Biology vol. 4 285–294 (2003).
29. Van Veen, T. A. B., Van Rijen, H. V. M. & Opthof, T. Cardiac gap junction channels: Modulation of expression and channel properties. Cardiovascular Research vol. 51 217–229 (2001).
30. Jacobsen, N. L. et al. Regulation of Cx37 channel and growth-suppressive properties by phosphorylation. J. Cell Sci. 130, 3308–3321 (2017).
31. Weilinger, N. L., Tang, P. L. & Thompson, R. J. Anoxia-induced NMDA receptor activation opens Pannexin channels via Src family kinases. J. Neurosci. 32, 12579–12588 (2012).
32. Lopez, W. et al. Mechanism of gating by calcium in connexin hemichannels. Proc. Natl. Acad. Sci. U. S. A. 113, E7986–E7995 (2016).
33. Sandilos, J. K. et al. Pannexin 1, an ATP release channel, is activated by caspase cleavage of its pore-associated C-terminal autoinhibitory region. J. Biol. Chem. 287, 11303–11311 (2012).
34. Solan, J. L. & Lampe, P. D. Specific Cx43 phosphorylation events regulate gap junction turnover in vivo. in FEBS Letters vol. 588 1423–1429 (Elsevier, 2014).
35. Reaume, A. G. et al. Cardiac malformation in neonatal mice lacking connexin43. Science (80-. ). 67, 1831–1834 (1995).
36. Barbe, M. T., Monyer, H. & Bruzzone, R. Cell-cell communication beyond connexins: The pannexin channels. Physiology vol. 21 103–114 (2006).
37. DeLalio, L. J. et al. Constitutive SRC-mediated phosphorylation of pannexin 1 at tyrosine 198 occurs at the plasma membrane. J. Biol. Chem. 294, 6940–6956 (2019).
38. Solan, J. L. & Lampe, P. D. Connexin phosphorylation as a regulatory event linked to gap junction
channel assembly. Biochimica et Biophysica Acta - Biomembranes vol. 1711 154–163 (2005).
39. Allen, M. J., Gemel, J., Beyer, E. C. & Lal, R. Atomic force microscopy of Connexin40 gap junction hemichannels reveals calcium-dependent three-dimensional molecular topography and open- closed conformations of both the extracellular and cytoplasmic faces. J. Biol. Chem. 286, 22139– 22146 (2011).
40. Ma, W., Hui, H., Pelegrin, P. & Surprenant, A. Pharmacological characterization of pannexin-1 currents expressed in mammalian cells. J. Pharmacol. Exp. Ther. 328, 409–418 (2009).
41. Locovei, S., Wang, J. & Dahl, G. Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium. FEBS Lett. 580, 239–244 (2006).
42. Chekeni, F. B. et al. Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 467, 863–867 (2010).
43. Wang, J. et al. The membrane protein Pannexin1 forms two open-channel conformations depending on the mode of activation. Sci. Signal. 7, (2014).
44. Ilkan, Z. et al. Evidence for shear-mediated Ca2+ entry through mechanosensitive cation channels in human platelets and a megakaryocytic cell line. J. Biol. Chem. 292, 9204–9217 (2017).
45. Carter, R. N. et al. Molecular and electrophysiological characterization of transient receptor potential ion channels in the primary murine megakaryocyte. J. Physiol. 576, 151–162 (2006).
46. Stritt, S. et al. Defects in TRPM7 channel function deregulate thrombopoiesis through altered cellular Mg 2+ homeostasis and cytoskeletal architecture. Nat. Commun. 7, (2016).
47. Abbonante, V. et al. A new path to platelet production through matrix sensing. Haematologica 102, 1150–1160 (2017).
48. Nesbitt, W. S. et al. Intercellular calcium communication regulates platelet aggregation and thrombus growth. J. Cell Biol. 160, 1151–1161 (2003).
49. Vorderwülbecke, B. J. et al. Regulation of endothelial connexin40 expression by shear stress. Am. J. Physiol. - Hear. Circ. Physiol. 302, (2012).
50. Laird, D. W. Life cycle of connexins in health and disease. Biochemical Journal vol. 394 527–543 (2006).
51. Silverman, W., Locovei, S. & Dahl, G. Probenecid, a gout remedy, inhibits pannexin 1 channels. Am. J. Physiol. - Cell Physiol. 295, (2008).
52. Simon, A. M., Goodenough, D. A., Li, E. & Paul, D. L. Female infertility in mice lacking connexin 37. Nature 385, 525–529 (1997).
53. Simon, A. M., Goodenough, D. A. & Paul, D. L. Mice lacking connexin40 have cardiac conduction abnormalities characteristic of atrioventricular block and bundle branch block. Curr. Biol. 8, 295– 298 (1998).
54. Kirchhoff, S. et al. Reduced cardiac conduction velocity and predisposition to arrhythmias in connexin40-deficient mice. Curr. Biol. 8, 299–302 (1998).
10
55. Sanchez, G. Enhancement of Heparin Effect by Probenecid. N. Engl. J. Med. 292, 48–48 (1975).
56. Cunningham, R. F., Israili, Z. H. & Dayton, P. G. Clinical Pharmacokinetics of Probenecid. Clin.
Pharmacokinet. 6, 135–151 (1981).
57. Martin, P. E. M., Wall, C. & Griffith, T. M. Effects of connexin-mimetic peptides on gap junction functionality and connexin expression in cultured vascular cells. Br. J. Pharmacol. 144, 617–627 (2005).
58. Pelegrin, P. & Surprenant, A. Pannexin-1 mediates large pore formation and interleukin-1β release by the ATP-gated P2X7 receptor. EMBO J. 25, 5071–5082 (2006).
59. Bargiotas, P., Krenz, A., Monyer, H. & Schwaninger, M. Functional outcome of pannexin-deficient mice after cerebral ischemia. Channels 6, 453–456 (2012).
60. Krenacs, T. & Rosendaal, M. Connexin43 gap junctions in normal, regenerating, and cultured mouse bone marrow and in human leukemias: Their possible involvement in blood formation. Am. J. Pathol. 152, 993–1004 (1998).
61. Ciovacco, W. A. et al. The role of gap junctions in megakaryocyte-mediated osteoblast proliferation and differentiation. Bone 44, 80–86 (2009).
62. Novielli-Kuntz, N. M. et al. Ablation of both Cx40 and Panx1 results in similar cardiovascular phenotypes exhibited in Cx40 knockout mice. Biosci. Rep. 39, (2019).