Accessibility navigation

Route selection in non-Euclidean virtual environments

Muryy, A. and Glennerster, A. ORCID: (2021) Route selection in non-Euclidean virtual environments. PLoS ONE, 16 (4). e0247818. ISSN 1932-6203

Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

[img] Text - Accepted Version
· Restricted to Repository staff only


It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1371/journal.pone.0247818


The way people choose routes through unfamiliar environments provides clues about the underlying representation they use. One way to test the nature of observers’ representation is to manipulate the structure of the scene as they move through it and measure which aspects of performance are significantly affected and which are not. We recorded the routes that participants took in virtual mazes to reach previously-viewed targets. The mazes were either physically realizable or impossible (the latter contained ‘wormholes’ that altered the layout of the scene without any visible change at that moment). We found that participants could usually find the shortest route between remembered objects even in physically impossible environments, despite the gross failures in pointing that an earlier study showed are evident in the physically impossible environment. In the physically impossible conditions, the choice made at a junction was influenced to a greater extent by whether that choice had, in the past, led to the discovery of a target (compared to a shortest-distance prediction). In the physically realizable mazes, on the other hand, junction choices were determined more by the shortest distance to the target. This pattern of results is compatible with the idea of a graph-like representation of space that can include information about previous success or failure for traversing each edge and also information about the distance between nodes. Our results suggest that complexity of the maze may dictate which of these is more important in influencing navigational choices.

Item Type:Article
Divisions:Interdisciplinary Research Centres (IDRCs) > Centre for Integrative Neuroscience and Neurodynamics (CINN)
Life Sciences > School of Psychology and Clinical Language Sciences > Department of Psychology
Life Sciences > School of Psychology and Clinical Language Sciences > Neuroscience
Life Sciences > School of Psychology and Clinical Language Sciences > Perception and Action
ID Code:96695
Publisher:Public Library of Science


Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation