Thiol isomerases orchestrate thrombosis and haemostasisSimoes Gaspar, R. and Gibbins, J. M. ORCID: https://orcid.org/0000-0002-0372-5352 (2021) Thiol isomerases orchestrate thrombosis and haemostasis. Antioxidants & Redox Signaling, 35 (13). ISSN 1523-0864
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1089/ars.2021.0086 Abstract/SummarySince protein disulphide isomerase (PDI) was first described in 1963, researchers have shown conclusively that PDI and sibling proteins are quintessential for thrombus formation. PDI, ERp5, ERp57 and ERp72, which in most cells are located in the endoplasmic reticulum and function to assist the folding of nascent protein, are released from platelets and vascular cells and interact with integrin αIIbβ3 on the outer surface of platelets. At the cell surface they continue to influence protein folding and function, propagating thrombosis and maintaining haemostasis. TMX1, which is a transmembrane thiol isomerase, is the first family member shown to negatively regulate platelets known to date. Targets of thiol isomerases have been indentified including integrin α2β1, Von Willebrand Factor (VWF), GpIbα, Nox-1, Nox-2 and tissue factor, all of which are pro-thrombotic, and several of which are on the cell surface. In spite of this, PDI can paradoxically catalyse the delivery of nitric oxide to platelets, which inhibits their function and decreases thrombus formation. Although the overall effect of PDI is to positively regulate platelet activation, it is still unclear how thiol isomerases function in pro-thrombotic states, such as obesity, diabetes and cancer. In parallel, there has been a surge in the development of novel thiol isomerase inhibitors, which display selectivity, potency and modulate thrombosis and haemostasis. The availability of selective thiol isomerase inhibitors has culminated in clinical trials with promising outcomes for the prevention of cancer-associated thrombosis. Altogether, thiol isomerases are perceived as an orchestrating force that regulates thrombus development. In the current review we will explore the history of PDI in cardiovascular biology, detail known mechanisms of action and summarise known thiol isomerase inhibitors.
DownloadsDownloads per month over past year
1 Bizzozero, J. Ueber einen neuen Formbestandtheil des Blutes und dessen Rolle bei der Thrombose und der Blutgerinnung. Archiv für pathologische Anatomie und Physiologie und für klinische Medicin 90, 261-332 (1882).
2 Quick, A. J. Bleeding problems in clinical medicine. (Saunders, 1970).
3 Roskam, J., Hugues, J. & Bounameaux, Y. LHEMOSTASE SPONTANEE ETUDE SYNTHETIQUE ET ANALYTIQUE. JOURNAL DE PHYSIOLOGIE 53, 175-& (1961).
4 Bettex-Galland, M. & Lüscher, E. Thrombosthenin—a contractile protein from thrombocytes. Its extraction from human blood platelets and some of its properties. Biochimica et biophysica acta 49, 536-547 (1961).
5 Zahn, F. W. Untersuchungen über thrombose. Archiv für pathologische Anatomie und Physiologie und für klinische Medicin 62, 81-124 (1874).
6 de Gaetano, G. Historical overview of the role of platelets in hemostasis and thrombosis. Haematologica 86, 349-356 (2001).
7 Bye, A. P., Unsworth, A. J. & Gibbins, J. M. Platelet signaling: a complex interplay between inhibitory and activatory networks. Journal of Thrombosis and Haemostasis 14, 918-930 (2016).
8 Savage, B., Saldivar, E. & Ruggeri, Z. M. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 84, 289-297 (1996).
9 Massberg, S. et al. A crucial role of glycoprotein VI for platelet recruitment to the injured arterial wall in vivo. J Exp Med 197, 41-49 (2003).
10 Durrant, T. N., van den Bosch, M. T. & Hers, I. Integrin αIIbβ3 outside-in signaling. Blood 130, 1607-1619 (2017).
11 Mancuso, M. E. & Santagostino, E. Platelets: much more than bricks in a breached wall. Br J Haematol 178, 209-219, doi:10.1111/bjh.14653 (2017).
12 Holbrook, L. M. et al. Platelets release novel thiol isomerase enzymes which are recruited to the cell surface following activation. Br J Haematol 148, 627-637, doi:10.1111/j.1365-2141.2009.07994.x (2010).
13 Jasuja, R., Furie, B. & Furie, B. C. Endothelium-derived but not platelet-derived protein disulfide isomerase is required for thrombus formation in vivo. Blood, The Journal of the American Society of Hematology 116, 4665-4674 (2010).
14 Chen, K., Lin, Y. & Detwiler, T. C. Protein disulfide isomerase activity is released by activated platelets. (1992).
15 Wu, Y. & Essex, D. W. Vascular thiol isomerases in thrombosis: The Yin and Yang. Journal of Thrombosis and Haemostasis (2020).
16 Gaspar, R. S., Trostchansky, A. & Paes, A. M. Potential Role of Protein Disulfide Isomerase in Metabolic Syndrome-Derived Platelet Hyperactivity. Oxid Med Cell Longev 2016, 2423547, doi:10.1155/2016/2423547 (2016).
17 Kim, K. et al. Platelet protein disulfide isomerase is required for thrombus formation but not for hemostasis in mice. Blood 122, 1052-1061, doi:10.1182/blood-2013-03-492504 (2013).
18 Jordan, P. A. et al. A role for the thiol isomerase protein ERP5 in platelet function. Blood 105, 1500-1507, doi:10.1182/blood-2004-02-0608 (2005).
19 Holbrook, L. M. et al. The platelet-surface thiol isomerase enzyme ERp57 modulates platelet function. J Thromb Haemost 10, 278-288, doi:10.1111/j.1538-7836.2011.04593.x (2012).
20 Holbrook, L. M. et al. A humanized monoclonal antibody that inhibits platelet-surface ERp72 reveals a role for ERp72 in thrombosis. J Thromb Haemost 16, 367-377, doi:10.1111/jth.13878 (2018).
21 Venetianer, P. & Straub, F. The enzymic reactivation of reduced ribonuclease. Biochimica et Biophysica Acta (BBA)-Specialized Section on Enzymological Subjects 67, 166-168 (1963).
22 Goldberger, R. F., Epstein, C. J. & Anfinsen, C. B. Acceleration of reactivation of reduced bovine pancreatic ribonuclease by a microsomal system from rat liver. Journal of biological chemistry 238, 628-635 (1963).
23 Hawkins, H. C. & Freedman, R. B. Randomly reoxidised soybean trypsin inhibitor and the possibility of conformational barriers to disulphide isomerization in proteins. FEBS letters 58, 7-11 (1975).
24 Tomizawa, H. H. Mode of action of an insulin-degrading enzyme from beef liver. Journal of Biological Chemistry 237, 428-431 (1962).
25 Edman, J. C., Ellis, L., Blacher, R. W., Roth, R. A. & Rutter, W. J. Sequence of protein disulphide isomerase and implications of its relationship to thioredoxin. Nature 317, 267-270 (1985).
26 Essex, D. W., Chen, K. & Swiatkowska, M. Localization of protein disulfide isomerase to the external surface of the platelet plasma membrane. (1995).
27 Manickam, N., Sun, X., Li, M., Gazitt, Y. & Essex, D. W. Protein disulphide isomerase in platelet function. British journal of haematology 140, 223-229 (2008).
28 Crescente, M. et al. Intracellular trafficking, localization, and mobilization of platelet-borne thiol isomerases. Arteriosclerosis, thrombosis, and vascular biology 36, 1164-1173 (2016).
29 Holbrook, L. M. et al. Platelets release novel thiol isomerase enzymes which are recruited to the cell surface following activation. British journal of haematology 148, 627-637 (2010).
30 Raturi, A., Miersch, S., Hudson, J. W. & Mutus, B. Platelet microparticle-associated protein disulfide isomerase promotes platelet aggregation and inactivates insulin. Biochimica et Biophysica Acta (BBA)-Biomembranes 1778, 2790-2796 (2008).
31 Hotchkiss, K. A., Matthias, L. J. & Hogg, P. J. Exposure of the cryptic Arg-Gly-Asp sequence in thrombospondin-1 by protein disulfide isomerase. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology 1388, 478-488 (1998).
32 Reinhardt, C. et al. Protein disulfide isomerase acts as an injury response signal that enhances fibrin generation via tissue factor activation. The Journal of clinical investigation 118, 1110-1122 (2008).
33 Tanaka, L. Y. et al. Peri/epicellular protein disulfide isomerase-A1 acts as an upstream organizer of cytoskeletal mechanoadaptation in vascular smooth muscle cells. American Journal of Physiology-Heart and Circulatory Physiology 316, H566-H579 (2019).
34 Tanaka, L. Y. et al. Peri/epicellular protein disulfide isomerase sustains vascular lumen caliber through an anticonstrictive remodeling effect. Hypertension 67, 613-622 (2016).
35 Cho, J., Furie, B. C., Coughlin, S. R. & Furie, B. A critical role for extracellular protein disulfide isomerase during thrombus formation in mice. The Journal of clinical investigation 118, 1123-1131 (2008).
36 Bowley, S. R., Fang, C., Merrill-Skoloff, G., Furie, B. C. & Furie, B. Protein disulfide isomerase secretion following vascular injury initiates a regulatory pathway for thrombus formation. Nature communications 8, 1-13 (2017).
37 Kim, K. et al. Platelet protein disulfide isomerase is required for thrombus formation but not for hemostasis in mice. Blood, The Journal of the American Society of Hematology 122, 1052-1061 (2013).
38 Wu, Y. et al. The disulfide isomerase ERp57 mediates platelet aggregation, hemostasis, and thrombosis. Blood, The Journal of the American Society of Hematology 119, 1737-1746 (2012).
39 Zhou, J. et al. The disulfide isomerase ERp72 supports arterial thrombosis in mice. Blood 130, 817-828 (2017).
40 Zhao, Z. et al. The transmembrane protein disulfide isomerase TMX1 negatively regulates platelet responses. blood 133, 246-251 (2019).
41 Passam, F. H. et al. Both platelet-and endothelial cell–derived ERp5 support thrombus formation in a laser-induced mouse model of thrombosis. Blood, The Journal of the American Society of Hematology 125, 2276-2285 (2015).
42 HOLBROOK, L. M. et al. The platelet‐surface thiol isomerase enzyme ERp57 modulates platelet function. Journal of Thrombosis and Haemostasis 10, 278-288 (2012).
43 Wang, L. et al. Platelet-derived ERp57 mediates platelet incorporation into a growing thrombus by regulation of the αIIbβ3 integrin. Blood 122, 3642-3650 (2013).
44 Eriksson, O. et al. Thiol isomerase ERp57 targets and modulates the lectin pathway of complement activation. Journal of Biological Chemistry 294, 4878-4888 (2019).
45 Holbrook, L. M. et al. A humanized monoclonal antibody that inhibits platelet‐surface ER p72 reveals a role for ER p72 in thrombosis. Journal of Thrombosis and Haemostasis 16, 367-377 (2018).
46 Araki, K. et al. Ero1-α and PDIs constitute a hierarchical electron transfer network of endoplasmic reticulum oxidoreductases. Journal of Cell Biology 202, 861-874 (2013).
47 Viotti, C. in Unconventional Protein Secretion 3-29 (Springer, 2016).
48 Araujo, T. L. et al. Protein disulfide isomerase externalization in endothelial cells follows classical and unconventional routes. Free Radical Biology and Medicine 103, 199-208 (2017).
49 Giordano, F. et al. PI (4, 5) P2-dependent and Ca2+-regulated ER-PM interactions mediated by the extended synaptotagmins. Cell 153, 1494-1509 (2013).
50 Zwicker, J. I. et al. Targeting protein disulfide isomerase with the flavonoid isoquercetin to improve hypercoagulability in advanced cancer. JCI insight 4 (2019).
51 Jayachandran, M. et al. Isoquercetin upregulates antioxidant genes, suppresses inflammatory cytokines and regulates AMPK pathway in streptozotocin-induced diabetic rats. Chemico-biological interactions 303, 62-69 (2019).
52 Stopa, J. D. et al. Protein disulfide isomerase inhibition blocks thrombin generation in humans by interfering with platelet factor V activation. JCI insight 2 (2017).
53 Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. cell 110, 673-687 (2002).
54 Cho, J. et al. Protein disulfide isomerase capture during thrombus formation in vivo depends on the presence of β3 integrins. Blood, The Journal of the American Society of Hematology 120, 647-655 (2012).
55 Swiatkowska, M., Szymański, J., Padula, G. & Cierniewski, C. S. Interaction and functional association of protein disulfide isomerase with αVβ3 integrin on endothelial cells. The FEBS journal 275, 1813-1823 (2008).
56 Passam, F. et al. Mechano-redox control of integrin de-adhesion. Elife 7, e34843 (2018).
57 O'Neill, S. et al. The platelet integrin αIIbβ3 has an endogenous thiol isomerase activity. Journal of Biological Chemistry 275, 36984-36990 (2000).
58 Lahav, J. et al. Enzymatically catalyzed disulfide exchange is required for platelet adhesion to collagen via integrin α2β1. Blood 102, 2085-2092 (2003).
59 Inoue, O., Suzuki-Inoue, K., Dean, W. L., Frampton, J. & Watson, S. P. Integrin α2β1 mediates outside-in regulation of platelet spreading on collagen through activation of Src kinases and PLCγ2. The Journal of cell biology 160, 769-780 (2003).
60 Wan, S. W. et al. Endothelial cell surface expression of protein disulfide isomerase activates β1 and β3 integrins and facilitates dengue virus infection. Journal of cellular biochemistry 113, 1681-1691 (2012).
61 Hahm, E. et al. Extracellular protein disulfide isomerase regulates ligand-binding activity of αMβ2 integrin and neutrophil recruitment during vascular inflammation. Blood, The Journal of the American Society of Hematology 121, 3789-3800 (2013).
62 Gaspar, R. S. et al. Myricetin, the main flavonoid in Syzygium cumini leaf, is a novel inhibitor of platelet thiol isomerases PDI and ERp5. Frontiers in pharmacology 10, 1678 (2020).
63 Mangin, P. H. et al. Immobilized fibrinogen activates human platelets through glycoprotein VI. haematologica 103, 898 (2018).
64 Remijn, J. A. et al. Role of ADP receptor P2Y12 in platelet adhesion and thrombus formation in flowing blood. Arteriosclerosis, thrombosis, and vascular biology 22, 686-691 (2002).
65 Bergmeier, W., Chauhan, A. K. & Wagner, D. D. Glycoprotein Ibα and von Willebrand factor in primary platelet adhesion and thrombus formation: lessons from mutant mice. Thrombosis and haemostasis 99, 264-270 (2008).
66 Blenner, M. A., Dong, X. & Springer, T. A. Structural basis of regulation of von Willebrand factor binding to glycoprotein Ib. Journal of Biological Chemistry 289, 5565-5579 (2014).
67 Lippok, S. et al. von Willebrand factor is dimerized by protein disulfide isomerase. Blood, The Journal of the American Society of Hematology 127, 1183-1191 (2016).
68 Burgess, J. K. et al. Physical proximity and functional association of glycoprotein 1bα and protein-disulfide isomerase on the platelet plasma membrane. Journal of Biological Chemistry 275, 9758-9766 (2000).
69 Stopa, J. D., Baker, K. M., Grover, S. P., Flaumenhaft, R. & Furie, B. Kinetic-based trapping by intervening sequence variants of the active sites of protein-disulfide isomerase identifies platelet protein substrates. Journal of Biological Chemistry 292, 9063-9074 (2017).
70 Li, J. et al. Platelet protein disulfide isomerase promotes glycoprotein ibα–mediated platelet-neutrophil interactions under thromboinflammatory conditions. Circulation 139, 1300-1319 (2019).
71 Rapaport, S. I. & Rao, L. V. M. The tissue factor pathway: how it has become a “prima ballerina”. Thrombosis and haemostasis 73, 007-017 (1995).
72 Ahamed, J. et al. Disulfide isomerization switches tissue factor from coagulation to cell signaling. Proceedings of the National Academy of Sciences 103, 13932-13937 (2006).
73 Popescu, N. I., Lupu, C. & Lupu, F. Extracellular protein disulfide isomerase regulates coagulation on endothelial cells through modulation of phosphatidylserine exposure. Blood 116, 993-1001 (2010).
74 Ansari, S. A., Pendurthi, U. R. & Rao, L. V. M. Role of cell surface lipids and thiol-disulphide exchange pathways in regulating the encryption and decryption of tissue factor. Thrombosis and haemostasis 119, 860-870 (2019).
75 Versteeg, H. H. & Ruf, W. Tissue factor coagulant function is enhanced by protein-disulfide isomerase independent of oxidoreductase activity. Journal of Biological Chemistry 282, 25416-25424 (2007).
76 Chen, F. et al. Protein disulfide isomerase enhances tissue factor-dependent thrombin generation. Biochemical and biophysical research communications 501, 172-177 (2018).
77 Falati, S., Gross, P., Merrill-Skoloff, G., Furie, B. C. & Furie, B. Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nature medicine 8, 1175-1180 (2002).
78 Robinson, R. M. et al. Inhibitors of the protein disulfide isomerase family for the treatment of multiple myeloma. Leukemia 33, 1011-1022 (2019).
79 Delaney, M. K. et al. Differential Roles of the NADPH-Oxidase 1 and 2 in Platelet Activation and Thrombosis. Arterioscler Thromb Vasc Biol 36, 846-854, doi:10.1161/ATVBAHA.116.307308 (2016).
80 Bayraktutan, U., Blayney, L. & Shah, A. M. Molecular characterization and localization of the NAD (P) H oxidase components gp91-phox and p22-phox in endothelial cells. Arteriosclerosis, thrombosis, and vascular biology 20, 1903-1911 (2000).
81 Griendling, K. K., Minieri, C. A., Ollerenshaw, J. D. & Alexander, R. W. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circulation research 74, 1141-1148 (1994).
82 Seno, T. et al. Involvement of NADH/NADPH oxidase in human platelet ROS production. Thrombosis research 103, 399-409 (2001).
83 Rastogi, R., Geng, X., Li, F. & Ding, Y. NOX activation by subunit interaction and underlying mechanisms in disease. Frontiers in cellular neuroscience 10, 301 (2017).
84 Vara, D., Campanella, M. & Pula, G. The novel NOX inhibitor 2-acetylphenothiazine impairs collagen-dependent thrombus formation in a GPVI-dependent manner. Br J Pharmacol 168, 212-224, doi:10.1111/j.1476-5381.2012.02130.x (2013).
85 Lambeth, J. D., Kawahara, T. & Diebold, B. Regulation of Nox and Duox enzymatic activity and expression. Free Radical Biology and Medicine 43, 319-331 (2007).
86 Schroder, K., Weissmann, N. & Brandes, R. P. Organizers and activators: Cytosolic Nox proteins impacting on vascular function. Free Radic Biol Med 109, 22-32, doi:10.1016/j.freeradbiomed.2017.03.017 (2017).
87 Vara, D., Cifuentes-Pagano, E., Pagano, P. J. & Pula, G. A novel combinatorial technique for simultaneous quantification of oxygen radicals and aggregation reveals unexpected redox patterns in the activation of platelets by different physiopathological stimuli. Haematologica 104, 1879-1891, doi:10.3324/haematol.2018.208819 (2019).
88 Gaspar, R. S., Ferreira, P. M., Mitchell, J. L., Pula, G. & Gibbins, J. M. Platelet-derived extracellular vesicles express NADPH oxidase-1 (Nox-1), generate superoxide and modulate platelet function. Free Radical Biology and Medicine 165, 395-400 (2021).
89 de, A. P. A. M. et al. Protein disulfide isomerase redox-dependent association with p47(phox): evidence for an organizer role in leukocyte NADPH oxidase activation. J Leukoc Biol 90, 799-810, doi:10.1189/jlb.0610324 (2011).
90 Fernandes, D. C., Manoel, A. H., Wosniak, J., Jr. & Laurindo, F. R. Protein disulfide isomerase overexpression in vascular smooth muscle cells induces spontaneous preemptive NADPH oxidase activation and Nox1 mRNA expression: effects of nitrosothiol exposure. Arch Biochem Biophys 484, 197-204, doi:10.1016/j.abb.2009.01.022 (2009).
91 Pescatore, L. A. et al. Protein disulfide isomerase is required for platelet-derived growth factor-induced vascular smooth muscle cell migration, Nox1 NADPH oxidase expression, and RhoGTPase activation. Journal of Biological Chemistry 287, 29290-29300 (2012).
92 Hordijk, P. L. Regulation of NADPH oxidases: the role of Rac proteins. Circulation research 98, 453-462 (2006).
93 Sousa, H. R. et al. Novel antiplatelet role for a protein disulfide isomerase-targeted peptide: evidence of covalent binding to the C-terminal CGHC redox motif. J Thromb Haemost 15, 774-784, doi:10.1111/jth.13633 (2017).
94 Gimenez, M. et al. Redox Activation of Nox1 (NADPH Oxidase 1) Involves an Intermolecular Disulfide Bond Between Protein Disulfide Isomerase and p47(phox) in Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 39, 224-236, doi:10.1161/ATVBAHA.118.311038 (2019).
95 Zhou, J. et al. The C-terminal CGHC motif of protein disulfide isomerase supports thrombosis. J Clin Invest 125, 4391-4406, doi:10.1172/JCI80319 (2015).
96 Gaspar, R. S. et al. Protein Disulphide Isomerase and NADPH Oxidase 1 Cooperate to Control Platelet Function and Are Associated with Cardiometabolic Disease Risk Factors. Antioxidants 10, 497 (2021).
97 Schiattarella, G. G. et al. Rac1 modulates endothelial function and platelet aggregation in diabetes mellitus. Journal of the American Heart Association 7, e007322 (2018).
98 Wang, X. et al. p47phox deficiency impairs platelet function and protects mice against arterial and venous thrombosis. Redox Biology, 101569 (2020).
99 Leavesley, D. I. et al. Vitronectin—master controller or micromanager? IUBMB life 65, 807-818 (2013).
100 Preissner, K. T. & Seiffert, D. Role of vitronectin and its receptors in haemostasis and vascular remodeling. Thrombosis research 89, 1-21 (1998).
101 Reheman, A. et al. Vitronectin stabilizes thrombi and vessel occlusion but plays a dual role in platelet aggregation. Journal of Thrombosis and Haemostasis 3, 875-883 (2005).
102 Essex, D. W., Miller, A., Swiatkowska, M. & Feinman, R. D. Protein Disulfide Isomerase Catalyzes the Formation of Disulfide-Linked Complexes of Vitronectin with Thrombin− Antithrombin. Biochemistry 38, 10398-10405 (1999).
103 Moretti, A. I. et al. Conserved gene microsynteny unveils functional interaction between protein disulfide isomerase and rho guanine-dissociation inhibitor families. Scientific reports 7, 1-18 (2017).
104 Aslan, J. E. & McCarty, O. J. Rho GTPases in platelet function. Journal of Thrombosis and Haemostasis 11, 35-46 (2013).
105 Sobierajska, K. et al. Protein disulfide isomerase directly interacts with β-actin Cys374 and regulates cytoskeleton reorganization. Journal of Biological Chemistry 289, 5758-5773 (2014).
106 Versteeg, H. H. & Ruf, W. Tissue factor coagulant function is enhanced by protein-disulfide isomerase independent of oxidoreductase activity. J Biol Chem 282, 25416-25424, doi:10.1074/jbc.M702410200 (2007).
107 Chen, K., Detwiler, T. C. & Essex, D. W. Characterization of protein disulphide isomerase released from activated platelets. Br J Haematol 90, 425-431 (1995).
108 Radomski, M., Palmer, R. & Moncada, S. An L-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proceedings of the National Academy of Sciences 87, 5193-5197 (1990).
109 Russo, I. et al. The activity of constitutive nitric oxide synthase is increased by the pathway cAMP/cAMP-activated protein kinase in human platelets. New insights into the antiaggregating effects of cAMP-elevating agents. Thromb Res 114, 265-273, doi:10.1016/j.thromres.2004.06.036 (2004).
110 Kwon, H. W., Shin, J. H., Cho, H. J., Rhee, M. H. & Park, H. J. Total saponin from Korean Red Ginseng inhibits binding of adhesive proteins to glycoprotein IIb/IIIa via phosphorylation of VASP (Ser(157)) and dephosphorylation of PI3K and Akt. J Ginseng Res 40, 76-85, doi:10.1016/j.jgr.2015.05.004 (2016).
111 Fuentes, E. & Palomo, I. Role of oxidative stress on platelet hyperreactivity during aging. Life Sci 148, 17-23, doi:10.1016/j.lfs.2016.02.026 (2016).
112 Ramachandran, N., Root, P., Jiang, X. M., Hogg, P. J. & Mutus, B. Mechanism of transfer of NO from extracellular S-nitrosothiols into the cytosol by cell-surface protein disulfide isomerase. Proc Natl Acad Sci U S A 98, 9539-9544, doi:10.1073/pnas.171180998 (2001).
113 Root, P., Sliskovic, I. & Mutus, B. Platelet cell-surface protein disulphide-isomerase mediated S-nitrosoglutathione consumption. Biochem J 382, 575-580, doi:10.1042/BJ20040759 (2004).
114 Peixoto, A. S. et al. Peroxynitrite preferentially oxidizes the dithiol redox motifs of protein-disulfide isomerase. J Biol Chem 293, 1450-1465, doi:10.1074/jbc.M117.807016 (2018).
115 Shah, C. M., Bell, S. E., Locke, I. C., Chowdrey, H. S. & Gordge, M. P. Interactions between cell surface protein disulphide isomerase and S-nitrosoglutathione during nitric oxide delivery. Nitric Oxide 16, 135-142, doi:10.1016/j.niox.2006.08.001 (2007).
116 Bell, S. E., Shah, C. M. & Gordge, M. P. Protein disulfide-isomerase mediates delivery of nitric oxide redox derivatives into platelets. Biochem J 403, 283-288, doi:10.1042/BJ20061146 (2007).
117 Bekendam, R. H. et al. Protein disulfide isomerase regulation by nitric oxide maintains vascular quiescence and controls thrombus formation. Journal of Thrombosis and Haemostasis 16, 2322-2335 (2018).
118 Matsuo, Y. et al. Identification of a novel thioredoxin-related transmembrane protein. Journal of Biological Chemistry 276, 10032-10038 (2001).
119 Hoffstrom, B. G. et al. Inhibitors of protein disulfide isomerase suppress apoptosis induced by misfolded proteins. Nature chemical biology 6, 900-906 (2010).
120 Kaplan, A. et al. Small molecule-induced oxidation of protein disulfide isomerase is neuroprotective. Proceedings of the National Academy of Sciences 112, E2245-E2252 (2015).
121 Vatolin, S. et al. Novel protein disulfide isomerase inhibitor with anticancer activity in multiple myeloma. Cancer research 76, 3340-3350 (2016).
122 Bekendam, R. H. et al. A substrate-driven allosteric switch that enhances PDI catalytic activity. Nature communications 7, 1-11 (2016).
123 Shergalis, A. et al. Characterization of aminobenzylphenols as protein disulfide isomerase inhibitors in glioblastoma cell lines. Journal of medicinal chemistry 63, 10263-10286 (2020).
124 Kyani, A. et al. Discovery and mechanistic elucidation of a class of protein disulfide isomerase inhibitors for the treatment of glioblastoma. ChemMedChem 13, 164-177 (2018).
125 Sousa, H. et al. Novel antiplatelet role for a protein disulfide isomerase‐targeted peptide: evidence of covalent binding to the C‐terminal CGHC redox motif. Journal of Thrombosis and Haemostasis 15, 774-784 (2017).
126 Zhou, J. et al. The C-terminal CGHC motif of protein disulfide isomerase supports thrombosis. The Journal of clinical investigation 125, 4391-4406 (2015).
127 Cole, K. S. et al. Characterization of an A-site selective protein disulfide isomerase A1 inhibitor. Biochemistry 57, 2035-2043 (2018).
128 Xu, S. et al. Inhibition of protein disulfide isomerase in glioblastoma causes marked downregulation of DNA repair and DNA damage response genes. Theranostics 9, 2282 (2019).
129 Cole, K. S. et al. Characterization of an A-Site Selective Protein Disulfide Isomerase A1 Inhibitor. Biochemistry 57, 2035-2043, doi:10.1021/acs.biochem.8b00178 (2018).
130 Watashi, K. et al. Cyclophilin B is a functional regulator of hepatitis C virus RNA polymerase. Molecular cell 19, 111-122 (2005).
131 Kaplan, A. & Stockwell, B. R. Structural elucidation of a small molecule inhibitor of protein disulfide isomerase. ACS medicinal chemistry letters 6, 966-971 (2015).
132 Chlebowska-Tuz, J. et al. Inhibition of protein disulfide isomerase induces differentiation of acute myeloid leukemia cells. haematologica 103, 1843-1852 (2018).
133 Greve, E. et al. Route exploration and synthesis of the reported pyridone-based PDI inhibitor STK076545. Organic & Biomolecular Chemistry 18, 6665-6681, doi:10.1039/D0OB01205J (2020).
134 Xu, S. et al. Discovery of an orally active small-molecule irreversible inhibitor of protein disulfide isomerase for ovarian cancer treatment. Proceedings of the National Academy of Sciences 109, 16348-16353 (2012).
135 Khodier, C. et al. in Probe Reports from the NIH Molecular Libraries Program [Internet] (National Center for Biotechnology Information (US), 2014).
136 Xiong, B., Jha, V., Min, J.-K. & Cho, J. Protein disulfide isomerase in cardiovascular disease. Experimental & Molecular Medicine, 1-10 (2020).
137 Kung, P.-H. et al. HPW-RX40 prevents human platelet activation by attenuating cell surface protein disulfide isomerases. Redox Biology 13, 266-277 (2017).
138 Holbrook, L. M. et al. Zafirlukast is a broad‐spectrum thiol isomerase inhibitor that inhibits thrombosis without altering bleeding times. British Journal of Pharmacology (2020).
139 Karala, A. R. & Ruddock, L. W. Bacitracin is not a specific inhibitor of protein disulfide isomerase. The FEBS journal 277, 2454-2462 (2010).
140 Jasuja, R. et al. Protein disulfide isomerase inhibitors constitute a new class of antithrombotic agents. The Journal of clinical investigation 122, 2104-2113 (2012).
141 Lin, L. et al. Quercetin-3-rutinoside inhibits protein disulfide isomerase by binding to its b′ x domain. Journal of Biological Chemistry 290, 23543-23552 (2015).
142 Zou, J. et al. Discovery of a novel ERp57 inhibitor as antiplatelet agent from danshen (Salvia miltiorrhiza). Evidence-Based Complementary and Alternative Medicine 2018 (2018).
143 Giamogante, F. et al. Punicalagin, an active pomegranate component, is a new inhibitor of PDIA3 reductase activity. Biochimie 147, 122-129 (2018).
144 Ren, L. et al. Molecular docking‐assisted screening reveals tannic acid as a natural protein disulphide isomerase inhibitor with antiplatelet and antithrombotic activities. Journal of Cellular and Molecular Medicine (2020).
145 Kao, C.-C. et al. Juglone prevents human platelet aggregation through inhibiting Akt and protein disulfide isomerase. Phytomedicine, 153449 (2020).
146 Wright, B., Watson, K. A., McGuffin, L. J., Lovegrove, J. A. & Gibbins, J. M. GRID and docking analyses reveal a molecular basis for flavonoid inhibition of Src family kinase activity. The Journal of nutritional biochemistry 26, 1156-1165 (2015).
147 Wright, B. et al. A structural basis for the inhibition of collagen‐stimulated platelet function by quercetin and structurally related flavonoids. British journal of pharmacology 159, 1312-1325 (2010).
148 Guerrero, J. et al. Flavonoids inhibit platelet function through binding to the thromboxane A2 receptor. Journal of Thrombosis and Haemostasis 3, 369-376 (2005).
149 Lee, A. C.-L., Harris, J. L., Khanna, K. K. & Hong, J.-H. A comprehensive review on current advances in peptide drug development and design. International journal of molecular sciences 20, 2383 (2019).
150 de A. Paes, A. M. et al. Protein disulfide isomerase redox‐dependent association with p47phox: evidence for an organizer role in leukocyte NADPH oxidase activation. Journal of leukocyte biology 90, 799-810 (2011).
151 Chamberlain, N. et al. Lung epithelial protein disulfide isomerase A3 (PDIA3) plays an important role in influenza infection, inflammation, and airway mechanics. Redox biology 22, 101129 (2019).
152 ZHAO, Z.-z., CHEN, F.-w., ZHOU, J.-s. & Cyrus, T. H. C. Effect of Small-molecule Inhibitor of Protein Disulfide Isomerase-PACMA31 in Platelet Activation and Thrombosis. Chinese Journal of Thrombosis and Hemostasis, 2 (2016).
153 Cui, G. et al. Novel anti-thrombotic agent for modulation of protein disulfide isomerase family member ERp57 for prophylactic therapy. Scientific Reports 5, 10353 (2015).
154 Trnková, L., Ricci, D., Grillo, C., Colotti, G. & Altieri, F. Green tea catechins can bind and modify ERp57/PDIA3 activity. Biochimica et Biophysica Acta (BBA)-General Subjects 1830, 2671-2682 (2013).
155 Mosawy, S., Gaiz, A., Karaksha, A. & Singh, I. The green tea extract epigallocatechin gallate inhibits human platelet function but not plasma coagulation. International Journal of Prevention and Treatment 5, 17-21 (2016).
156 Khan, M. M. et al. Discovery of a small molecule PDI inhibitor that inhibits reduction of HIV-1 envelope glycoprotein gp120. ACS chemical biology 6, 245-251 (2011).
157 Sachetto, A. T. A., Rosa, J. G. & Santoro, M. L. Rutin (quercetin-3-rutinoside) modulates the hemostatic disturbances and redox imbalance induced by Bothrops jararaca snake venom in mice. PLoS neglected tropical diseases 12, e0006774 (2018).
158 Klappa, P., Hawkins, H. C. & Freedman, R. B. Interactions between protein disulphide isomerase and peptides. European journal of biochemistry 248, 37-42 (1997).
159 Ozaki, Y. et al. Mastoparan, a wasp venom, activates platelets via pertussis toxin-sensitive GTP-binding proteins. Biochemical and biophysical research communications 170, 779-785 (1990). University Staff: Request a correction | Centaur Editors: Update this record |