Bilateral regional extracranial blood flow regulation to hypoxia and unilateral duplex ultrasound measurement error

[thumbnail of Open Access]
Preview
Text (Open Access)
- Published Version
· Available under License Creative Commons Attribution.
[thumbnail of Friend_Bilateral regional extracranial blood flow regulation in hypoxia 16.03.21 CoAuthor[18].pdf]
Text
- Accepted Version
· Restricted to Repository staff only

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Friend, A. T., Rogan, M., Rossetti, G. M. K. ORCID: https://orcid.org/0000-0002-9610-6066, Lawley, J. S., Mullins, P. G., Sandoo, A., Macdonald, J. H. and Oliver, S. J. (2021) Bilateral regional extracranial blood flow regulation to hypoxia and unilateral duplex ultrasound measurement error. Experimental Physiology, 106 (7). pp. 1535-1548. ISSN 1469-445X doi: 10.1113/EP089196

Abstract/Summary

Whether blood flow regulation to hypoxia is similar between left and right internal carotid arteries (ICA) and vertebral arteries (VA) is unclear. Extracranial blood flow is regularly calculated by doubling a unilateral assessment; however, lateral artery differences may lead to measurement error. This study aimed to determine extracranial blood flow regulation to hypoxia when factoring for vessel type (ICA or VA) and vessel side (left or right) effects, and investigate unilateral assessment measurement error compared to bilateral assessment. In a repeated-measures crossover design, extracranial arteries of 44 participants were assessed bilaterally by Duplex ultrasound during 90 minutes of normoxic and poikilocapnic hypoxic (12.0% fraction of inspired oxygen) conditions. Linear mixed model analyses revealed no ‘Condition’ × ‘Vessel Type’ × ‘Vessel Side’ interaction for blood flow, vessel diameter, and flow velocity (all P > 0.05) indicating left and right ICA and VA blood flow regulation to hypoxia was similar. Bilateral hypoxic reactivity was comparable [ICA, 1.4 (1.0) vs VA, 1.7 (1.1) Δ%·ΔSpO2-1; P = 0.12]. Compared to bilateral assessment, unilateral mean measurement error of the relative blood flow response to hypoxia was up to 5%, but individual errors reached 37% and were greatest in ICA and VA with the smaller resting blood flow due to a ratio-scaling problem. In conclusion, left and right ICA and VA regulation to hypoxia is comparable when factoring for vessel type and vessel side. Assessing the ICA and VA vessels with the larger resting blood flow, not the left or right vessel, reduces unilateral measurement error.

Altmetric Badge

Item Type Article
URI https://centaur.reading.ac.uk/id/eprint/97683
Identification Number/DOI 10.1113/EP089196
Refereed Yes
Divisions Interdisciplinary Research Centres (IDRCs) > Centre for Integrative Neuroscience and Neurodynamics (CINN)
Life Sciences > School of Psychology and Clinical Language Sciences > Department of Psychology
Life Sciences > School of Psychology and Clinical Language Sciences > Neuroscience
Publisher Wiley
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record