[1] A.M. Wendelboe, G.E. Raskob, Global Burden of Thrombosis: Epidemiologic Aspects, Circ Res 118(9) (2016) 1340-7.
[2] J.S. Bennett, Structure and function of the platelet integrin alphaIIbbeta3, J Clin Invest 115(12) (2005) 3363-9.
[3] D.W. Essex, Y. Wu, Multiple protein disulfide isomerases support thrombosis, Curr Opin Hematol 25(5) (2018) 395-402.
[4] R. Flaumenhaft, Protein disulfide isomerase as an antithrombotic target, Trends Cardiovasc Med 23(7) (2013) 264-8.
[5] R. Jasuja, F.H. Passam, D.R. Kennedy, S.H. Kim, L. van Hessem, L. Lin, S.R. Bowley, S.S. Joshi, J.R. Dilks, B. Furie, B.C. Furie, R. Flaumenhaft, Protein disulfide isomerase inhibitors constitute a new class of antithrombotic agents, J Clin Invest 122(6) (2012) 2104-13.
[6] L. Wang, D.W. Essex, A new antithrombotic strategy: inhibition of the C-terminal active site of protein disulfide isomerase, J Thromb Haemost 15(4) (2017) 770-773.
[7] R.S. Gaspar, S.A. da Silva, J. Stapleton, J.L.L. Fontelles, H.R. Sousa, V.T. Chagas, S. Alsufyani, A. Trostchansky, J.M. Gibbins, A.M.A. Paes, Myricetin, the Main Flavonoid in Syzygium cumini Leaf, Is a Novel Inhibitor of Platelet Thiol Isomerases PDI and ERp5, Front Pharmacol 10 (2019) 1678.
[8] R. Jasuja, F.H. Passam, D.R. Kennedy, S.H. Kim, L. van Hessem, L. Lin, S.R. Bowley, S.S. Joshi, J.R. Dilks, B. Furie, Protein disulfide isomerase inhibitors constitute a new class of antithrombotic agents, The Journal of clinical investigation 122(6) (2012) 2104-2113.
[9] R.H. Bekendam, P.K. Bendapudi, L. Lin, P.P. Nag, J. Pu, D.R. Kennedy, A. Feldenzer, J. Chiu, K.M. Cook, B. Furie, M. Huang, P.J. Hogg, R. Flaumenhaft, A substrate-driven allosteric switch that enhances PDI catalytic activity, Nat Commun 7 (2016) 12579.
[10] P.H. Kung, P.W. Hsieh, Y.T. Lin, J.H. Lee, I.H. Chen, C.C. Wu, HPW-RX40 prevents human platelet activation by attenuating cell surface protein disulfide isomerases, Redox Biol 13 (2017) 266-277.
[11] H.R. Sousa, R.S. Gaspar, E.M. Sena, S.A. da Silva, J.L. Fontelles, T.L. AraUjo, M. Mastrogiovanni, D.M. Fries, A.P. Azevedo-Santos, F.R. Laurindo, A. Trostchansky, A.M. Paes, Novel antiplatelet role for a protein disulfide isomerase-targeted peptide: evidence of covalent binding to the C-terminal CGHC redox motif, J Thromb Haemost 15(4) (2017) 774-784.
[12] M. Gimenez, S. Veríssimo-Filho, I. Wittig, B.M. Schickling, F. Hahner, C. Schürmann, L.E. Netto, J.C. Rosa, R.P. Brandes, S. Sartoretto, Redox Activation of Nox1 (NADPH Oxidase 1) Involves an Intermolecular Disulfide Bond Between Protein Disulfide Isomerase and p47phox in Vascular Smooth Muscle Cells, Arteriosclerosis, thrombosis, and vascular biology 39(2) (2019) 224-236.
[13] D. Vara, E. Cifuentes-Pagano, P.J. Pagano, G. Pula, A novel combinatorial technique for simultaneous quantification of oxygen radicals and aggregation reveals unexpected redox patterns in the activation of platelets by different physiopathological stimuli, haematologica 104(9) (2019) 1879.
[14] R.S. Gaspar, T. Sage, G. Little, N. Kriek, G. Pula, J.M. Gibbins, Protein Disulphide Isomerase and NADPH Oxidase 1 Cooperate to Control Platelet Function and Are Associated with Cardiometabolic Disease Risk Factors, Antioxidants 10(3) (2021) 497.
[15] Y.-M. Kim, S.-W. Youn, V. Sudhahar, A. Das, R. Chandhri, H.C. Grajal, J. Kweon, S. Leanhart, L. He, P.T. Toth, Redox regulation of mitochondrial fission protein Drp1 by protein disulfide isomerase limits endothelial senescence, Cell reports 23(12) (2018) 3565-3578.
[16] L. Bonilla, V.B. O‘Donnell, S.R. Clark, H. Rubbo, A. Trostchansky, Regulation of protein kinase C by nitroarachidonic acid: impact on human platelet activation, Archives of biochemistry and biophysics 533(1-2) (2013) 55-61.
[17] H. Sousa, R. Gaspar, E. Sena, S. da Silva, J. Fontelles, T. AraUjo, M. Mastrogiovanni, D. Fries, A. Azevedo-Santos, F. Laurindo, Novel antiplatelet role for a protein disulfide isomerase-targeted peptide: evidence of covalent binding to the C-terminal CGHC redox motif, Journal of Thrombosis and Haemostasis 15(4) (2017) 774-784.
[18] R.S. Gaspar, S.A. da Silva, J. Stapleton, J.L.d.L. Fontelles, H.R. Sousa, V.T. Chagas, S. Alsufyani, A. Trostchansky, J.M. Gibbins, A.M.d.A. Paes, Myricetin, the main flavonoid in Syzygium cumini leaf, is a novel inhibitor of platelet thiol isomerases PDI and ERp5, Frontiers in pharmacology 10 (2020) 1678.
[19] A.P. Bye, A.J. Unsworth, M.J. Desborough, C.A. Hildyard, N. Appleby, D. Bruce, N. Kriek, S.H. Nock, T. Sage, C.E. Hughes, Severe platelet dysfunction in NHL patients receiving ibrutinib is absent in patients receiving acalabrutinib, Blood advances 1(26) (2017) 2610-2623.
[20] A.A. Abubaker, D. Vara, I. Eggleston, I. Canobbio, G. Pula, A novel flow cytometry assay using dihydroethidium as redox-sensitive probe reveals NADPH oxidase-dependent generation of superoxide anion in human platelets exposed to amyloid peptide β, Platelets 30(2) (2019) 181-189.
[21] C. Metcalfe, A. Ramasubramoni, G. Pula, M.T. Harper, S.J. Mundell, C.H. Coxon, Thioredoxin inhibitors attenuate platelet function and thrombus formation, PLoS One 11(10) (2016) e0163006.
[22] M.D. Brand, D.G. Nicholls, Assessing mitochondrial dysfunction in cells, Biochemical Journal 435(2) (2011) 297-312.
[23] G.A. Cortopassi, E. Wang, There is substantial agreement among interspecies estimates of DNA repair activity, Mechanisms of ageing and development 91(3) (1996) 211-218.
[24] S. Ravi, B. Chacko, H. Sawada, P.A. Kramer, M.S. Johnson, G.A. Benavides, V. O’Donnell, M.B. Marques, V.M. Darley-Usmar, Metabolic plasticity in resting and thrombin activated platelets, PloS one 10(4) (2015) e0123597.
[25] B. Kehrel, S. Wierwille, K.J. Clemetson, O. Anders, M. Steiner, C. Graham Knight, R.W. Farndale, M. Okuma, M.J. Barnes, Glycoprotein VI is a major collagen receptor for platelet activation: it recognizes the platelet-activating quaternary structure of collagen, whereas CD36, glycoprotein IIb/IIIa, and von Willebrand factor do not, Blood, The Journal of the American Society of Hematology 91(2) (1998) 491-499.
[26] J.K. Burgess, K.A. Hotchkiss, C. Suter, N.P. Dudman, J. Szöllösi, C.N. Chesterman, B.H. Chong, P.J. Hogg, Physical proximity and functional association of glycoprotein 1bα and protein-disulfide isomerase on the platelet plasma membrane, Journal of Biological Chemistry 275(13) (2000) 9758- 9766.
[27] B. Wright, L.A. Moraes, C.F. Kemp, W. Mullen, A. Crozier, J.A. Lovegrove, J.M. Gibbins, A structural basis for the inhibition of collagen-stimulated platelet function by quercetin and structurally related flavonoids, British journal of pharmacology 159(6) (2010) 1312-1325.
[28] M. Aibibula, K. Naseem, R. Sturmey, Glucose metabolism and metabolic flexibility in blood platelets, Journal of Thrombosis and Haemostasis 16(11) (2018) 2300-2314.
[29] J.A. Bennett, M.A. Mastrangelo, S.K. Ture, C.O. Smith, S.G. Loelius, R.A. Berg, X. Shi, R.M. Burke, S.L. Spinelli, S.J. Cameron, The choline transporter Slc44a2 controls platelet activation and thrombosis by regulating mitochondrial function, Nature communications 11(1) (2020) 1-9.
[30] P. Ohlmann, A. Eckly, M. Freund, J.-P. Cazenave, S. Offermanns, C. Gachet, ADP induces partial platelet aggregation without shape change and potentiates collagen-induced aggregation in the absence of Gαq, Blood, The Journal of the American Society of Hematology 96(6) (2000) 2134-2139.