References
• Mushtaq, M.E.; Wani, S.M. Polyphenols and human health: A review. Int. J. Pharma Bio Sci. 2013, 4, 338–360.
• Rasouli, H.; Farzaei, M.H.; Khodarahmi, R. Polyphenols and their benefits: A review. Int. J. Food Prop. 2017, 20, 1700–1741.
• Fraga, C.G.; Croft, K.D.; Kennedy, D.O.; Tomás-Barberán, F.A. The effects of polyphenols and other bioactives on human health. Food Funct. 2019, 10, 514–528.
• Lamport, D.J.; Dye, L.; Wightman, J.D.; Lawton, C.L. The effects of flavonoid and other polyphenol consumption on cognitive performance: A systematic research review of human experimental and epidemiological studies. Nutr. Aging 2012, 1, 5–25.
• Lamport, D.J.; Saunders, C.; Butler, L.T.; Spencer, J.P. Fruits, vegetables, 100% juices, and cognitive function. Nutr. Rev. 2014, 72, 774–789.
• Bell, L.; Lamport, D.J.; Butler, L.T.; Williams, C.M. A review of the cognitive effects observed in humans following acute supplementation with flavonoids, and their associated mechanisms of action. Nutrients 2015, 7, 10290–10306.
• Ammar, A.; Trabelsi, K.; Boukhris, O.; Bouaziz, B.; Müller, P.; M Glenn, J.; Bott, N.T.; Müller, N.; Chtourou, H.; Driss, T.; et al. Effects of Polyphenol-Rich Interventions on Cognition and Brain Health in Healthy Young and Middle-Aged Adults: Systematic Review and Meta-Analysis. J. Clin. Med. 2020, 9, 1598.
• Lamport, D.J.; Williams, C.M. Polyphenols and Cognition in Humans: An Overview of Current Evidence from Recent Systematic Reviews and Meta-Analyses. Brain Plast. 2020, 6, 139-153.
• Khalid, S.; Barfoot, K.L.; May, G.; Lamport, D.J.; Reynolds, S.A.; Williams, C.M. Effects of acute blueberry flavonoids on mood in children and young adults. Nutrients 2017, 9, 158.
• Fisk, J.; Khalid, S.; Reynolds, S.A.; Williams, C.M. Effect of 4 weeks daily wild blueberry supplementation on symptoms of depression in adolescents. Br. J. Nutr. 2020, 124, 181-188.
• Pase, M.P.; Scholey, A.B.; Pipingas, A.; Kras, M.; Nolidin, K.; Gibbs, A.; Wesnes K.; Stough C. Cocoa polyphenols enhance positive mood states but not cognitive performance: A randomized, placebo-controlled trial. J. Psychopharmacol. 2013, 27, 451–458.
• NHS. Postnatal Depression. Available online: https://www.nhs.uk/conditions/post-natal-depression/ (accessed on 21 August 2020).
• Cameron, E.E.; Sedov, I.D.; Tomfohr-Madsen, L.M. Prevalence of paternal depression in pregnancy and the postpartum: An updated meta-analysis. J. Affect. Disord. 2016, 206, 189–203.
• Beck, C.T.; Records, K.; Rice, M. Further development of the postpartum depression predictors inventory-revised. J. Obstet. Gynecol. Neonatal Nurs. 2006, 35, 735–745.
• Halbreich, U.; Karkun, S. Cross-cultural and social diversity of prevalence of PPD and depressive symptoms. J. Affect. Disord. 2006, 91, 97–111.
• Leahy-Warren, P.; McCarthy, G. Postnatal depression: Prevalence, mothers’ perspectives, and treatments. Arch. Psychiatr. Nurs. 2007, 21, 91–100.
• Bass III, P.F.; Bauer, N.S. Parental postpartum depression: More than” baby blues”. Contemp. Pediatrics 2018, 35, 35–38.
• Jones, I.; Cantwell, R. The classification of perinatal mood disorders—Suggestions for DSM-V and ICD-11. Arch. Womens Ment. Health 2010, 13, 33–36.
• American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric As-sociation: Arlington, VA, USA, 2013.
• Dennis, C.-L. (2003). Detection, prevention, and treatment of postpartum depression. In Stewart, D.E., Robertson, E., Dennis, C.-L., Grace, S.L., & Wallington, T. (2003). Postpartum depression: Literature review of risk factors and interven-tions.
• Oates, M. Suicide: The leading cause of maternal death. Br. J. Psychiatry 2003, 183, 279–281.
• Matthey, S.; Barnett, B.; Howie, P.; Kavanagh, K. Diagnosing postpartum depression in mothers and fathers: Whatever happened to anxiety. J. Affect. Disord. 2003, 74, 139–147.
• Boath, E.; Henshaw, C. The treatment of postnatal depression: A comprehensive literature review. J. Reprod. Infant Psychol. 2001, 19, 215–248.
• Chang, S.C.; Cassidy, A.; Willett, W.C.; Rimm, E.B.; O’Reilly, E.J.; Okereke, O.I. Dietary flavonoid intake and risk of in-cident depression in midlife and older women. Am. J. Clin. Nutr. 2016, 104, 704–714.
• Godos, J.; Castellano, S.; Ray, S.; Grosso, G.; Galvano, F. Dietary polyphenol intake and depression: Results from the mediterranean healthy eating, lifestyle and aging (meal) study. Molecules 2018, 23, 999.
• Bayes, J.; Schloss, J.; Sibbritt, D. Effects of Polyphenols in a Mediterranean Diet on Symptoms of Depression: A Systematic Literature Review. Adv. Nutr. 2020, 11,602–615.
• Davinelli, S.; Scapagnini, G.; Marzatico, F.; Nobile, V.; Ferrara, N.; Corbi, G. Influence of equol and resveratrol supple-mentation on health-related quality of life in menopausal women: A randomized, placebo-controlled study. Maturitas 2017, 96, 77–83.
• Ko, Y.H.; Kim, S.K.; Lee, S.Y.; Jang, C.G. Flavonoids as therapeutic candidates for emotional disorders such as anxiety and depression. Arch. Pharmacal Res. 2020, 43, 1128-1143.
• Allam, F.; Dao, A.T.; Chugh, G.; Bohat, R.; Jafri, F.; Patki, G.; Mowrey, C.; Asghar, M.; Alkadhi, K.A.; Salim, S.; et al. Grape Powder Supplementation Prevents Oxidative Stress—Induced Anxiety—Like Behavior, Memory Impairment, and High Blood Pressure in Rats–3. J. Nutr. 2013, 143, 835–842.
• Gao, W.; Wang, W.; Peng, Y.; Deng, Z. Antidepressive effects of kaempferol mediated by reduction of oxidative stress, proinflammatory cytokines and up-regulation of AKT/β-catenin cascade. Metab. Brain Dis. 2019, 34, 485–494.
• Filho, C.B. et al. Kappa-opioid receptors mediate the antidepressant-like activity of hesperidin in the mouse forced swimming test. Eur. J. Pharmacol. 2013, 698, 286–291.
• Souza, L.C.; de Gomes, M.G.; Goes, A.T.; Del Fabbro, L.; Carlos Filho, B.; Boeira, S.P.; Jesse, C.R. Evidence for the in-volvement of the serotonergic 5-HT(1A) receptors in the antidepressant-like effect caused by hesperidin in mice. Prog. Neuropsychopharmacol Biol. Psychiatry 2013, 40, 103–109.
• Williams, C.M.; Abd El Mohsen, M.; Vauzour, D.; Rendeiro, C.; Butler, L.T.; Ellis, J.A.; Whiteman, M.; Spencer, J.P. Blue-berry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Radic. Biol. Med. 2008, 45, 295–305.
• Rendeiro, C.; Vauzour, D.; Kean, R.J.; Butler, L.T.; Rattray, M.; Spencer, J.P.; Williams, C.M. Blueberry supplementation induces spatial memory improvements and region-specific regulation of hippocampal BDNF mRNA expression in young rats. Psychopharmacology 2012, 223, 319–330.
• Rendeiro, C.; Vauzour, D.; Rattray, M.; Waffo-Téguo, P.; Mérillon, J.M.; Butler, L.T.; Williams, C.M.; Spencer, J.P. Dietary levels of pure flavonoids improve spatial memory performance and increase hippocampal brain derived neurotrophic factor. PLoS ONE 2013, 8, e63535.
• Neshatdoust, S.; Saunders, C.; Castle, S.M.; Vauzour, D.; Williams, C.; Butler, L.; Lovegrove, J.A.; Spencer, J.P.E. High-flavonoid intake induces cognitive improvements linked to changes in serum brain-derived neurotrophic factor: Two randomised, controlled trials. Nutr. Healthy Aging 2016, 4, 81–93.
• Office for National Statistics. Average Household Income, UK: Financial Year Ending 2020 (Provisional). Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/personalandhouseholdfinances/incomeandwealth/bulletins/householddisposableincomeandinequality/latest (accessed on 20 October 2020).
• Fallon, V.; Davies, S.M.; Silverio, S.A.; Jackson, L.; De Pascalis, L.; Harrold, J.A. Psychosocial experiences of postnatal women during the COVID-19 pandemic. A UK-wide study of prevalence rates and risk factors for clinically relevant depression and anxiety. J. Psychiatr. Res. 2021, 136, 157–166.
• Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160.
• Tendais, I.A.B.; Costa, R.; Conde, A.; Figueiredo, B. Screening for depression and anxiety disorders from pregnancy to postpartum with the EPDS and STAI. Span. J. Psychol. 2014, 17, E7.
• U.S. Department of Agriculture, Agricultural Research Service. USDA Database for the Flavonoid Content of Selected Foods, Release 3.0. Nutr. Data Lab. Home Page 2011. Available online: http://www.ars.usda.gov/nutrientdata/flav (accessed 23 March 2021).
• Day, N.; Oakes, S.; Luben, R.; Khaw, K.T.; Bingham, S.A.; Welch, A.; Wareham, N. EPIC-Norfolk: Study design and char-acteristics of the cohort. European Prospective Investigation of Cancer. Br. J. Cancer 1999, 80, 95–103.
• Watson, D.; Clark, L.A.; Tellegen, A. Development and validation of brief measures of positive and negative affect: The PANAS scales. J. Personal. Soc. Psychol. 1988, 54, 1063.
• Spielberger, C.D.; Gorsuch, R.L.; Lushene, R.; Vagg, P.R.; Jacobs, G.A. Manual for the State-Trait Anxiety Inventory; Consulting Psychologists Press: Palo Alto, CA, USA, 1983.
• Julian, L.J. Measures of anxiety: State—Trait Anxiety Inventory (STAI), Beck Anxiety Inventory (BAI), and Hospital Anxiety and Depression Scale—Anxiety (HADS—A). Arthritis Care Res. 2011, 63, S467–S472.
• Kroenke, K.; Spitzer, R.L. The PHQ-9: A new depression diagnostic and severity measure. Psychiatr. Ann. 2002, 32, 509–521.
• Kroenke, K.; Strine, T.W.; Spritzer, R.L.; Williams, J.B.; Berry, J.T.; Mokdad, A.H. The PHQ-8 as a measure of current de-pression in the general population. J. Affect. Disord. 2009, 114, 163–73.
• Skevington, S.; Lotfy, M.; O’Connell, K. The World Health Organization’s WHOQOL-BREF quality of life assessment: Psychometric properties and results of the international field trial. A Report from the WHOQOL Group. Qual. Life Res. 2004, 13, 299–310.
• Silverman, M.E.; Reichenberg, A.; Savitz, D.A.; Cnattingius, S.; Lichtenstein, P.; Hultman, C.M.; Larsson, H.; Sandin, S. The risk factors for postpartum depression: A population-based study. Depress. Anxiety. 2017, 34,178–187.
• O’Hara, M.W.; Wisner. K.L. Perinatal mental illness: Definition, description, and aetiology. Best Pract. Res. Clin. Obstet. Gynaecol. 2014, 28, 3–12.
• Nelson, D.B.; Freeman, M.P.; Johnson, N.L.; McIntire, D.D.; Leveno, K.J. A prospective study of postpartum depression in 17,648 parturients. J. Matern. Fetal Neonatal Med. 2013, 26,1155–1161.
• GOV.UK: Staying at Home and away from Others (Social Distancing). 23 March 2020. Available online: https://www.gov.uk/government/publications/full-guidance-on-staying-at-home-and-away-from-others (accessed 29th June 2021).
• Fallon, V.; Silverio, S.A.; Halford, J.; Bennett, K.; Harrold, J. Postpartum-specific anxiety and maternal bonding: Further evidence to support the use of childbearing specific mood tools. J. Reprod. Infant Psychol. 2019, 39, 114-124.
• Fallon, V.; Halford, J.C.; Bennett, K.M.; Harrold, J.A. The postpartum specific anxiety scale: Development and preliminary validation. Arch. Women Ment. Health 2016, 19, 1079–1090.
• Dalky, H.F.; Meininger, J.C.; Al-Ali, N.M. The reliability and validity of the Arabic World Health Organization quality of life-BREF instrument among family caregivers of relatives with psychiatric illnesses in Jordan. J. Nurs. Res. 2017, 25, 224–230.
• Reba, K.; Birhane, B.W.; Gutema, H. Validity and reliability of the Amharic version of the World Health Organization’s quality of life questionnaire (WHOQOL-BREF) in patients with diagnosed type 2 diabetes in Felege Hiwot referral hos-pital, Ethiopia. J. Diabetes Res. 2019, 2019, Article ID 3513159, 6 pages.
• Swinkels, A.; Giuliano, T.A. The measurement and conceptualization of mood awareness: Monitoring and labeling one’s mood states. Personal. Soc. Psychol. Bull. 1995, 21, 934–949.
• Epperson, C.N.; Gueorguieva, R.; Czarkowski, K.A.; Stiklus, S.; Sellers, E.; Krystal, J.H.; Rothman, D.L.; Mason, G.F. Pre-liminary evidence of reduced occipital GABA concentrations in puerperal women: A 1H-MRS study. Psychopharmacology (Berl) 2006, 186, 425–433.
• Frokjaer, V.G.; Pinborg, A.; Holst, K.K.; Overgaard, A.; Henningsson, S.; Heede, M.; Larsen, E.C.; Jensen, P.S.; Agn, M.; Nielsen, A.P.; et al. Role of serotonin transporter changes in depressive responses to sex-steroid hormone manipulation: A positron emission tomography study. Biol. Psychiatry 2015, 78, 534–543.
• Moses-Kolko, E.L.; Wisner, K.L.; Price, J.C.; Berga, S.L.; Drevets, W.C.; Hanusa, B.H.; Loucks, T.L.; Meltzer, C.C. Serotonin 1A receptor reductions in postpartum depression: A positron emission tomography study. Fertil. Steril. 2008, 89, 685–692.
• Sacher, J.; Wilson, A.A.; Houle, S.; Rusjan, P.; Hassan, S.; Bloomfield, P.M.; Stewart, D.E.; Meyer, J.H. Elevated brain monoamine oxidase A binding in the early postpartum period. Arch. Gen. Psychiatry 2010, 67, 468–474.
• Sacher, J.; Rekkas, P.V.; Wilson, A.A.; Houle, S.; Romano, L.; Hamidi, J.; Rusjan, P.; Fan, I.; Stewart, D.E.; Meyer, J.H.; et al. Relationship of monoamine oxidase-A distribution volume to postpartum depression and postpartum crying. Neuro-psychopharmacology 2015, 40, 429–435.
• O’Hara, M.W.; Schlechte, J.A.; Lewis, D.A.; Wright, E.J. Prospective study of postpartum blues: Biologic and psychosocial factors. Arch. Gen. Psychiatry 1991, 48, 801–806.
• Dennis, C.L. Can we identify mothers at risk for postpartum depression in the immediate postpartum period using the Edinburgh Postnatal Depression Scale? J. Affect. Disord. 2004, 78,163–169.
• Dowlati, Y.; Ravindran, A.V.; Segal, Z.V.; Stewart, D.E.; Steiner, M.; Meyer, J.H. Selective dietary supplementation in early postpartum is associated with high resilience against depressed mood. Proc. Natl. Acad. Sci. USA 2017, 114, 3509–3514.