Accessibility navigation


Understanding El Niño in ocean-atmosphere general circulation models: progress and challenges

Guilyardi, E., Wittenberg, A., Fedorov, A., Collins, M., Wang, C., Capotondi, A., van Oldenborgh, G. J. and Stockdale, T. (2009) Understanding El Niño in ocean-atmosphere general circulation models: progress and challenges. Bulletin of the American Meteorological Society, 90 (3). pp. 325-340. ISSN 1520-0477

Full text not archived in this repository.

To link to this article DOI: 10.1175/2008BAMS2387.1

Abstract/Summary

Determining how El Niño and its impacts may change over the next 10 to 100 years remains a difficult scientific challenge. Ocean–atmosphere coupled general circulation models (CGCMs) are routinely used both to analyze El Niño mechanisms and teleconnections and to predict its evolution on a broad range of time scales, from seasonal to centennial. The ability to simulate El Niño as an emergent property of these models has largely improved over the last few years. Nevertheless, the diversity of model simulations of present-day El Niño indicates current limitations in our ability to model this climate phenomenon and to anticipate changes in its characteristics. A review of the several factors that contribute to this diversity, as well as potential means to improve the simulation of El Niño, is presented.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Science > School of Mathematical and Physical Sciences > Department of Meteorology
Faculty of Science > School of Mathematical and Physical Sciences > NCAS
ID Code:1197
Uncontrolled Keywords:coupled climate models; tropical pacific climate;sea-surface temperature;southern-oscillation; equatorial Pacific; interannual variability; multimodel ensemble; seasonal cycle; intercomparison project; interdecadal changes
Publisher:American Meteorological Society

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation