Accessibility navigation


Effect of colonic bacterial metabolites on Caco-2 cell paracellular permeability in vitro

Hughes, R., Kurth, M.J., McGilligan, V., McGlynn, J. and Rowland, I.R. (2008) Effect of colonic bacterial metabolites on Caco-2 cell paracellular permeability in vitro. Nutrition and Cancer, 60 (2). pp. 259-266. ISSN 0163-5581

Full text not archived in this repository.

To link to this article DOI: 10.1080/01635580701649644

Abstract/Summary

One common effect of tumor promoters is increased tight junction (TJ) permeability. TJs are responsible for paracellular permeability and integrity of the barrier function. Occludin is one of the main proteins responsible for TJ structure. This study tested the effects of physiological levels of phenol, ammonia, primary bile acids (cholic acid, CA, and chenodeoxycholic acid, CDCA), and secondary bile acids (lithocholic acid, LCA, and deoxycholic acid, DCA) on paracellular permeability using a Caco-2 cell model. Paracellular permeability of Caco-2 monolayers was assessed by transepithelial electrical resistance (TER) and the apical to basolateral flux of [C-14]-mannitol. Secondary, but not primary, bile acids increased permeability as reflected by significantly decreased TER and increased mannitol flux. Both phenol and ammonia also increased permeability. The primary bile acid CA significantly increased occludin expression (P < 0.05), whereas CDCA had no significant effect on occludin expression as compared to the negative control. The secondary bile acids DCA and LCA significantly increased occludin expression (P < 0.05), whereas phenol had no significant effect on the protein expression as compared to the negative control. This suggests that the increased permeability observed with LCA, DCA, phenol, and ammonia was not related to an effect on occludin expression. In conclusion, phenol, ammonia, and secondary bile acids were shown to increase paracellular permeability and reduce epithelial barrier function at doses typical of levels found in fecal samples. The results contribute to the evidence these gut microflora-generated products have tumor-promoting activity.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Life Sciences > School of Chemistry, Food and Pharmacy > Department of Food and Nutritional Sciences
Interdisciplinary centres and themes > Institute for Cardiovascular and Metabolic Research (ICMR)
ID Code:13301
Uncontrolled Keywords:N-NITROSO COMPOUNDS, KINASE-C-ALPHA, BILE-ACIDS, TIGHT JUNCTIONS, RESISTANT STARCH, FECAL MICROFLORA, PHORBOL ESTER, PROTEIN, CANCER, AMMONIA

Centaur Editors: Update this record

Page navigation