Accessibility navigation


Kinetic energy analysis of the response of the Atlantic meridional overturning circulation to CO2-forced climate change

Gregory, J. M. and Tailleux, R. (2011) Kinetic energy analysis of the response of the Atlantic meridional overturning circulation to CO2-forced climate change. Climate Dynamics, 37 (5-6). pp. 893-914. ISSN 1432-0894

Full text not archived in this repository.

To link to this article DOI: 10.1007/s00382-010-0847-6

Abstract/Summary

Atmosphere–ocean general circulation models (AOGCMs) predict a weakening of the Atlantic meridional overturning circulation (AMOC) in response to anthropogenic forcing of climate, but there is a large model uncertainty in the magnitude of the predicted change. The weakening of the AMOC is generally understood to be the result of increased buoyancy input to the north Atlantic in a warmer climate, leading to reduced convection and deep water formation. Consistent with this idea, model analyses have shown empirical relationships between the AMOC and the meridional density gradient, but this link is not direct because the large-scale ocean circulation is essentially geostrophic, making currents and pressure gradients orthogonal. Analysis of the budget of kinetic energy (KE) instead of momentum has the advantage of excluding the dominant geostrophic balance. Diagnosis of the KE balance of the HadCM3 AOGCM and its low-resolution version FAMOUS shows that KE is supplied to the ocean by the wind and dissipated by viscous forces in the global mean of the steady-state control climate, and the circulation does work against the pressure-gradient force, mainly in the Southern Ocean. In the Atlantic Ocean, however, the pressure-gradient force does work on the circulation, especially in the high-latitude regions of deep water formation. During CO2-forced climate change, we demonstrate a very good temporal correlation between the AMOC strength and the rate of KE generation by the pressure-gradient force in 50–70°N of the Atlantic Ocean in each of nine contemporary AOGCMs, supporting a buoyancy-driven interpretation of AMOC changes. To account for this, we describe a conceptual model, which offers an explanation of why AOGCMs with stronger overturning in the control climate tend to have a larger weakening under CO2 increase.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Science > School of Mathematical and Physical Sciences > Department of Meteorology
Interdisciplinary centres and themes > Walker Institute for Climate System Research
Faculty of Science > School of Mathematical and Physical Sciences > NCAS
ID Code:17556
Uncontrolled Keywords:Atlantic meridional overturning circulation; Ocean kinetic energy; Climate change
Publisher:Springer

Centaur Editors: Update this record

Page navigation