Accessibility navigation


Monophosphothreonyl extracellular signal-regulated kinases 1 and 2 (ERK1/2) are formed endogenously in intact cardiac myocytes and are enzymically active

Downloads

Downloads per month over past year

Sugden, P., Markou, T., Fuller, S. J., Tham, E. L., Molkentin, J., Paterson, H. and Clerk, A. (2011) Monophosphothreonyl extracellular signal-regulated kinases 1 and 2 (ERK1/2) are formed endogenously in intact cardiac myocytes and are enzymically active. Cellular Signalling, 23 (2). pp. 468-477. ISSN 0898-6568

[img] Text - Accepted Version
· Please see our End User Agreement before downloading.

3066Kb

To link to this article DOI: 10.1016/j.cellsig.2010.10.024

Abstract/Summary

ERK1 and ERK2 (ERK1/2) are central to the regulation of cell division, growth and survival. They are activated by phosphorylation of the Thr- and the Tyr- residues in their Thr-Glu-Tyr activation loops. The dogma is that dually-phosphorylated ERK1/2 constitute the principal activities in intact cells. We previously showed that, in neonatal rat cardiac myocytes, endothelin-1 and phorbol 12-myristate 13-acetate (PMA) powerfully and rapidly (maximal at ~ 5 min) activate ERK1/2. Here, we show that dually-phosphorylated ERK1/2 rapidly (< 2 min) appear in the nucleus following stimulation with endothelin-1. We characterized the active ERK1/2 species in myocytes exposed to endothelin-1 or PMA using MonoQ FPLC. Unexpectedly, two peaks of ERK1 and two peaks of ERK2 activity were resolved using in vitro kinase assays. One of each of these represented the dually-phosphorylated species. The other two represented activities for ERK1 or ERK2 which were phosphorylated solely on the Thr- residue. Monophosphothreonyl ERK1/2 represented maximally ~ 30% of total ERK1/2 activity after stimulation with endothelin-1 or PMA, and their kcat values were estimated to be minimally ~ 30% of the dually-phosphorylated species. Appearance of monophosphothreonyl ERK1/2 was rapid but delayed in comparison with dually-phosphorylated ERK1/2. Of 10 agonists studied, endothelin-1 and PMA were most effective in terms of ERK1/2 activation and in stimulating the appearance of monophosphothreonyl and dually-phosphorylated ERK1/2. Thus, enzymically active monophosphothreonyl ERK1/2 are formed endogenously following activation of the ERK1/2 cascade and we suggest that monophosphothreonyl ERK1/2 arise by protein tyrosine phosphatase-mediated dephosphorylation of dually-phosphorylated ERK1/2.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Life Sciences > School of Biological Sciences > Biomedical Sciences
Interdisciplinary centres and themes > Institute for Cardiovascular and Metabolic Research (ICMR)
ID Code:18087
Uncontrolled Keywords:ERKs; Cardiac myocytes; Endothelin; Phorbol esters; Monophosphorylation
Publisher:Elsevier

Download Statistics for this item.

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation