Accessibility navigation


Tropical Cyclones in a hieararchy of climate models of increasing resolution

Vidale, P. L., Roberts, M., Hodges, K., Strachan, J., Demory, M.-E. and Slingo, J. (2010) Tropical Cyclones in a hieararchy of climate models of increasing resolution. In: Charabi, Y. (ed.) Indian ocean tropical cyclones and climate change. Earth and environmental science, 1. Springer, pp. 9-14.

Full text not archived in this repository.

To link to this article DOI: 10.1007/978-90-481-3109-9_2

Abstract/Summary

Tropical Cyclone (TC) is normally not studied at the individual level with Global Climate Models (GCMs), because the coarse grid spacing is often deemed insufficient for a realistic representation of the basic underlying processes. GCMs are indeed routinely deployed at low resolution, in order to enable sufficiently long integrations, which means that only large-scale TC proxies are diagnosed. A new class of GCMs is emerging, however, which is capable of simulating TC-type vortexes by retaining a horizontal resolution similar to that of operational NWP GCMs; their integration on the latest supercomputers enables the completion of long-term integrations. The UK-Japan Climate Collaboration and the UK-HiGEM projects have developed climate GCMs which can be run routinely for decades (with grid spacing of 60 km) or centuries (with grid spacing of 90 km); when coupled to the ocean GCM, a mesh of 1/3 degrees provides eddy-permitting resolution. The 90 km resolution model has been developed entirely by the UK-HiGEM consortium (together with its 1/3 degree ocean component); the 60 km atmospheric GCM has been developed by UJCC, in collaboration with the Met Office Hadley Centre.

Item Type:Book or Report Section
Refereed:Yes
Divisions:Faculty of Science > School of Mathematical and Physical Sciences > Department of Meteorology
Faculty of Science > School of Mathematical and Physical Sciences > NCAS
ID Code:26511
Publisher:Springer

Centaur Editors: Update this record

Page navigation