Accessibility navigation


Targeted activation of toll-like receptors: conjugation of a toll-like receptor 7 agonist to a monoclonal antibody maintains antigen binding and specificity

Gadd, A. J. R., Greco, F., Cobb, A. J. A. and Edwards, A. D. (2015) Targeted activation of toll-like receptors: conjugation of a toll-like receptor 7 agonist to a monoclonal antibody maintains antigen binding and specificity. Bioconjugate Chemistry, 26 (8). pp. 1743-1752. ISSN 1043-1802

[img]
Preview
Text - Accepted Version
· Please see our End User Agreement before downloading.

609kB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1021/acs.bioconjchem.5b00302

Abstract/Summary

Therapeutic activation of Toll-like receptors (TLR) has potential for cancer immunotherapy, for augmenting the activity of anti-tumor monoclonal antibodies (mAbs), and for improved vaccine adjuvants. A previous attempt to specifically target TLR agonists to dendritic cells (DC) using mAbs failed because conjugation led to non-specific binding and mAbs lost specificity. We demonstrate here for the first time the successful conjugation of a small molecule TLR7 agonist to an anti-tumour mAb (the anti-hCD 20 rituximab) without compromising antigen specificity. The TLR7 agonist UC-1V150 was conjugated to rituximab using two conjugation methods and yield, molecular substitution ratio, retention of TLR7 activity and specificity of antigen binding were compared. Both conjugation methods produced rituximab-UC-1V150 conjugates with UC-1V150 : rituximab ratio ranging from 1:1 to 3:1 with drug loading quantified by UV spectroscopy and drug substitution ratio verified by MALDI TOF mass spectroscopy. The yield of purified conjugates varied with conjugation method, and dropped as low as 31% using a method previously described for conjugating UC-1V150 to proteins, where a bifunctional crosslinker was firstly reacted with rituximab, and secondly to the TLR7 agonist. We therefore developed a direct conjugation method by producing an amine-reactive UV active version of UC-1V150, termed NHS:UC-1V150. Direct conjugation with NHS:UC-1V150 was quick and simple and gave improved conjugate yields of 65-78%. Rituximab-UC-1V150 conjugates had the expected pro-inflammatory activity in vitro (EC50 28-53 nM) with a significantly increased activity over unconjugated UC-1V150 (EC50 547 nM). Antigen binding and specificity of the rituxuimab-UC-1V150 conjugates was retained, and after incubation with human peripheral blood leukocytes, all conjugates bound strongly only to CD20-expressing B cells whilst no non-specific binding to CD20-negative cells was observed. Selective targeting of Toll-like receptor activation directly within tumors or to DC is now feasible.

Item Type:Article
Refereed:Yes
Divisions:Interdisciplinary centres and themes > Chemical Analysis Facility (CAF) > Mass Spectrometry (CAF)
Interdisciplinary centres and themes > Chemical Analysis Facility (CAF) > NMR (CAF)
Faculty of Life Sciences > School of Chemistry, Food and Pharmacy > School of Pharmacy > Medicinal Chemistry Research Group
Faculty of Life Sciences > School of Chemistry, Food and Pharmacy > School of Pharmacy > Pharmaceutics Research Group
ID Code:41984
Publisher:American Chemical Society

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation