Accessibility navigation


Using satellite and reanalysis data to evaluate the representation of latent heating in extratropical cyclones in a climate model

Hawcroft, M., Dacre, H., Forbes, R., Hodges, K., Shaffrey, L. ORCID: https://orcid.org/0000-0003-2696-752X and Stein, T. ORCID: https://orcid.org/0000-0002-9215-5397 (2017) Using satellite and reanalysis data to evaluate the representation of latent heating in extratropical cyclones in a climate model. Climate Dynamics, 48 (7). pp. 2255-2278. ISSN 0930-7575

[img]
Preview
Text - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

20MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1007/s00382-016-3204-6

Abstract/Summary

Extratropical cyclones are a key feature of the weather in the extratropics, which climate models need to represent in order to provide reliable projections of future climate. Extratropical cyclones produce significant precipitation and the associated latent heat release can play a major role in their development. This study evaluates the ability of a climate model, HiGEM, to represent latent heating in extratropical cyclones. Remote sensing data is used to investigate the ability of both the climate model and ERA-Interim (ERAI) reanalysis to represent extratropical cyclone cloud features before latent heating itself is assessed. An offline radiance simulator, COSP, and the ISCCP and CloudSat datasets are used to evaluate comparable fields from HiGEM and ERAI. HiGEM is found to exhibit biases in the cloud structure of extratropical cyclones, with too much high cloud produced in the warm conveyor belt region compared to ISCCP. Significant latent heating occurs in this region, derived primarily from HiGEM’s convection scheme. ERAI is also found to exhibit biases in cloud structure, with more clouds at lower altitudes than those observed in ISCCP in the warm conveyor belt region. As a result, latent heat release in ERAI is concentrated at lower altitudes. CloudSat indicates that much precipitation may be produced at too low an altitude in both HiGEM and ERAI, particularly ERAI, and neither capture observed variability in precipitation intensity. The potential vorticity structure in composite extratropical cyclones in HiGEM and ERAI is also compared. A more pronounced tropopause ridge evolves in HiGEM on the leading edge of the composite as compared to ERAI. One future area of research to be addressed is what impact these biases in the representation of latent heating have on climate projections produced by HiGEM. The biases found in ERAI indicate caution is required when using reanalyses to study cloud features and precipitation processes in extratropical cyclones or using reanalysis to evaluate climate models’ ability to represent their structure.

Item Type:Article
Refereed:Yes
Divisions:Science > School of Mathematical, Physical and Computational Sciences > NCAS
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:66253
Publisher:Springer

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation