Accessibility navigation


Expression profiling indicating low selenium-sensitive microRNA levels linked to cell cycle and cell stress response pathways in the CaCo-2 cell line

McCann, M. J., Rotjanapun, K., Hesketh, J. E. and Roy, N. C. (2017) Expression profiling indicating low selenium-sensitive microRNA levels linked to cell cycle and cell stress response pathways in the CaCo-2 cell line. British Journal of Nutrition, 117 (9). pp. 1212-1221. ISSN 1475-2662

[img]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

1MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1017/S0007114517001143

Abstract/Summary

Se is an essential micronutrient for human health, and fluctuations in Se levels and the potential cellular dysfunction associated with it may increase the risk for disease. Although Se has been shown to influence several biological pathways important in health, little is known about the effect of Se on the expression of microRNA (miRNA) molecules regulating these pathways. To explore the potential role of Se-sensitive miRNA in regulating pathways linked with colon cancer, we profiled the expression of 800 miRNA in the CaCo-2 human adenocarcinoma cell line in response to a low-Se (72 h at <40 nm) environment using nCounter direct quantification. These data were then examined using a range of in silico databases to identify experimentally validated miRNA-mRNA interactions and the biological pathways involved. We identified ten Se-sensitive miRNA (hsa-miR-93-5p, hsa-miR-106a-5p, hsa-miR-205-5p, hsa-miR-200c-3p, hsa-miR-99b-5p, hsa-miR-302d-3p, hsa-miR-373-3p, hsa-miR-483-3p, hsa-miR-512-5p and hsa-miR-4454), which regulate 3588 mRNA in key pathways such as the cell cycle, the cellular response to stress, and the canonical Wnt/β-catenin, p53 and ERK/MAPK signalling pathways. Our data show that the effects of low Se on biological pathways may, in part, be due to these ten Se-sensitive miRNA. Dysregulation of the cell cycle and of the stress response pathways due to low Se may influence key genes involved in carcinogenesis.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Life Sciences > School of Chemistry, Food and Pharmacy > Department of Food and Nutritional Sciences > Human Nutrition Research Group
ID Code:70789
Uncontrolled Keywords:miRNA microRNA, qPCR quantitative PCR, CaCo-2 cell line, MicroRNA, NanoString, Selenium
Publisher:Cambridge University Press

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation