* Balmaseda, M. A., Mogensen, K. and Weaver, A. T. 2013. Evaluation of the ECMWF ocean reanalysis system ORAS4. Q. J. Roy. Meteor. Soc. 139(674), 1132–1161. DOI: 10.1002/qj.2063.
* Bishop, C. H., Etherton, B. J. and Majumdar, S. J. 2001. Adaptive sampling with the ensemble transform Kalman filter. Part I: theoretical aspects. Mon. Weather Rev. 129(3), 420–436. DOI: 10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2.
* Bloom, S. C., Takacs, L. L., da Silva, A. M. and Ledvina,
D. 1996. Data assimilation using incremental analysis updates. Mon. Weather Rev. 124(6), 1256–1271. DOI:
10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2.
* Bretherton, C. S., Smith, C. and Wallace, J. M. 1992.
An intercomparison of methods for finding coupled patterns in climate data. J. Climate 5(6), 541–560. DOI:
10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2.
* Brockwell, P. J. and Davis, R.A. 2002. Introduction to Time Series and Forecasting. Springer-Verlag, New York, pp. 137–178.
* Evensen,G. and van Leeuwen,P.J.2000. An ensemble Kalman smoother for nonlinear dynamics. Mon. Weather Rev. 128(6), 1852–1867. DOI:
10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2.
* Fairbairn, D., Pring, S. R., Lorenc, A. C. and Roulstone, I. 2014. A comparison of 4DVar with ensemble data assimilation methods. Q. J. Roy. Meteor. Soc. 140(678), 281–294. DOI: 10.1002/qj.2135.
* Fisher, M., Leutbecher, M. and Kelly, G. A. 2005. On the equivalence between Kalman smoothing and weak-constraint four-dimensional variational data assimilation. Q. J. Roy. Meteor. Soc. 131(613), 3235–3246. DOI: 10.1256/qj.04.142.
* Goodliff, M., Amezcua, J. and van Leeuwen, P. J. 2015.
Comparing hybrid data assimilation methods on the Lorenz 1963 model with increasing non-linearity. Tellus A 67, 26928. DOI: 10.3402/tellusa.v67.26928.
* Jackson, L. C., Peterson, K. A., Roberts, C. D. and Wood, R. A. 2016. Recent slowing of Atlantic overturning circulation as a recovery from earlier strengthening. Nat.Geosci.9(7),518–522.DOI: 10.1038/ngeo2715.
* Köhl, A. 2015. Evaluation of the GECCO2 ocean synthesis: transports of volume, heat and freshwater in theAtlantic. Q. J. Roy. Meteor. Soc. 141(686), 166–181. DOI: 10.1002/qj.2347.
* LeVeque, R. J. 1992. Numerical Methods for Conservation Laws Birkhäuser, Basel, pp. 97–113.
* Lorenc, A. C. and Payne, T. 2007. 4D-Var and the butterfly effect: statistical four-dimensional data assimilation for a wide range of scales. Q. J. Roy. Meteor. Soc. 133(624), 607–614. DOI: 10.1002/qj.36.
* Lorenz, E. N. and Emanuel, K. A. 1998. Optimal sites
for supplementary weather observations: simulation with
a small model. J. Atmos. Sci. 55(3), 399–414. DOI:
10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2.
* McCullagh, P. and Nelder, J. A. 1989. Generalized Linear Models Chapman & Hall, London, pp. 48–97.
* Ménard, R. and Daley, R. 1996. The application of Kalman smoother theory to the estimation of 4DVAR error statistics. Tellus A 48(2), 221–237. DOI: 10.1034/j.1600-0870.1996.t01-1-00003.x.
* Ollinaho, P., Lock, S.-J., Leutbecher, M., Bechtold, P., Beljaars, A. and co-authors. 2016. Towards process-level representation of model uncertainties: stochastically perturbed parametrizations in the ECMWF ensemble. Q. J. Roy. Meteor. Soc. 143(702), 408–422. DOI: 10.1002/qj.2931.
* Pires, C.,Vautard, R. and Talagrand, O. 1996. On extending the limits of variational assimilation in nonlinear chaotic systems. Tellus A 48(1), 96–121. DOI: 10.3402/tellusa.v48i1.11634.
* Polo, I., Robson, J., Sutton, R. and Balmaseda, M. A. 2014. The importance of wind and buoyancy forcing for the boundary density variations and the geostrophic component of the AMOC at 26 ◦ N. J. Phys. Oceanogr. 44(9), 2387–2408. DOI: 10.1175/JPO-D-13-0264.1.
* Sugiura,N.,Awaji,T.,Masuda,S.,Mochizuki,T.,Toyoda,T.,Miyama,T. and co-authors. 2008. Development of a four-dimensional variational coupled data assimilation system for enhanced analysis and prediction of seasonal to interannual climate variations. J.Geophys.Res.Oceans 113(C10), C10017. DOI: 10.1029/2008JC004741.
* Swanson, K., Vautard, R. and Pires, C. 1998. Four-
dimensional variational assimilation and predictability in a quasi-geostrophic model. Tellus A 50(4), 369–390. DOI:
10.1034/j.1600-0870.1998.t01-4-00001.x.
* Talagrand, O. and Courtier, P. 1987. Variational assimilation of meteorological observations with the adjoint vorticity equation I: theory. Q. J. Roy. Meteor. Soc. 113(478), 1311–1328. DOI: 10.1002/qj.49711347812.
* Waters, J., Lea, D. J., Martin, M. J., Mirouze, I., Weaver, A. and co-authors. 2015. Implementing a variational data assimilation system in an operational 1/4 degree global ocean model. Q. J. Roy. Meteor. Soc. 141(687), 333–349. DOI: 10.1002/qj.2388.