Accessibility navigation


El niño-southern oscillation complexity

Timmermann, A., An, S.-I., Kug, J.-S., Jin, F.-F., Cai, W., Capotondi, A., Cobb, K., Lengaigne, M., McPhaden, M. J., Stuecker, M. F., Stein, K., Wittenberg, A. T., Yun, K.-S., Bayr, T., Chen, H.-C., Chikamoto, Y., Dewitte, B., Dommenget, D., Grothe, P., Guilyardi, E. , Ham, Y.-G., Hayashi, M., Ineson, S., Kang, D., Kim, S., Kim, W., Lee, J.-Y., Li, T., Luo, J.-J., McGregor, S., Planton, Y., Power, S., Rashid, H., Ren, H.-L., Santoso, A., Takahashi, K., Todd, A., Wang, G., Wang, G., Xie, R., Yang, W.-H., Yeh, S.-W., Yoon, J., Zeller, E. and Zhang, X. (2018) El niño-southern oscillation complexity. Nature, 559 (7715). pp. 535-545. ISSN 0028-0836

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1038/s41586-018-0252-6

Abstract/Summary

El Niño events are characterized by surface warming of the tropical Pacific Ocean and weakening of equatorial trade winds that occur every few years. Such conditions are accompanied by changes in atmospheric and oceanic circulation, affecting global climate, marine and terrestrial ecosystems, fisheries and human activities. The alternation of warm El Niño and cold La Niña conditions, referred to as the El Niño-Southern Oscillation (ENSO), represents the strongest year-to-year fluctuation of the global climate system. Here we provide a synopsis of our current understanding of the spatio-temporal complexity of this important climate mode and its influence on the Earth system.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Science > School of Mathematical, Physical and Computational Sciences > NCAS
Faculty of Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:78558
Publisher:Nature Publishing Group

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation