Accessibility navigation

Systemic gut microbial modulation of bile acid metabolism in host tissue compartments

Swann, J. R., Want, E. J., Geier, F. M., Spagou, K., Wilson, I. D. , Sidaway, J. E., Nicholson, J. K. and Holmes, E. (2011) Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proceedings of the National Academy of Sciences, 108 (Supplement). pp. 4523-4530. ISSN 1091-6490 (Microbes and Health Sackler Colloquium)

Full text not archived in this repository.

To link to this item DOI: 10.1073/pnas.1006734107


We elucidate the detailed effects of gut microbial depletion on the bile acid sub-metabolome of multiple body compartments (liver, kidney, heart, and blood plasma) in rats. We use a targeted ultraperformance liquid chromatography with time of flight mass-spectrometry assay to characterize the differential primary and secondary bile acid profiles in each tissue and show a major increase in the proportion of taurine-conjugated bile acids in germ-free (GF) and antibiotic (streptomycin/penicillin)-treated rats.Although conjugated bile acids dominate the hepatic profile (97.0 ± 1.5%) of conventional animals, unconjugated bile acids comprise the largest proportion of the total measured bile acid profile in kidney (60.0±10.4%) andheart (53.0 ± 18.5%) tissues. In contrast, in the GF animal, taurine-conjugated bile acids (especially taurocholic acid and tauro-β-muricholic acid) dominated the bile acid profiles (liver: 96.0 ± 14.5%; kidney: 96 ± 1%; heart: 93 ± 1%; plasma: 93.0 ± 2.3%), with unconjugated and glycine-conjugated species representing a small proportion of the profile. Higher free taurine levels were found in GF livers compared with the conventional liver (5.1-fold; P < 0.001). Bile acid diversity was also lower in GF and antibiotic-treated tissues compared with conventional animals. Because bile acids perform important signaling functions, it is clear that these chemical communication networks are strongly influencedbymicrobial activitiesormodulation, as evidenced by farnesoid X receptor-regulated pathway transcripts. The presence of specific microbial bile acid co-metabolite patterns in peripheral tissues (including heart and kidney) implies a broader signaling role for these compounds and emphasizes the extent of symbiotic microbial influences in mammalian homeostasis.

Item Type:Article
Divisions:Faculty of Life Sciences > School of Chemistry, Food and Pharmacy > Department of Food and Nutritional Sciences > Food Microbial Sciences Research Group
Interdisciplinary centres and themes > Institute for Cardiovascular and Metabolic Research (ICMR)
ID Code:8123
Publisher:National Academy of Sciences

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation