Accessibility navigation


Storyline description of Southern Hemisphere midlatitude circulation and precipitation response to greenhouse gas forcing

Mindlin, J., Shepherd, T. G., Vera, C., Osman, M., Zappa, G., Lee, R. W. and Hodges, K. I. (2020) Storyline description of Southern Hemisphere midlatitude circulation and precipitation response to greenhouse gas forcing. Climate Dynamics, 54 (9-10). pp. 4399-4421. ISSN 0930-7575

[img]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

9MB
[img] Text - Accepted Version
· Restricted to Repository staff only until 6 May 2021.

13MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1007/s00382-020-05234-1

Abstract/Summary

As evidence of climate change strengthens, knowledge of its regional implications becomes an urgent need for decision making. Current understanding of regional precipitation changes is substantially limited by our understanding of the atmospheric circulation response to climate change, which to a high degree remains uncertain. This uncertainty is reflected in the wide spread in atmospheric circulation changes projected in multimodel ensembles, which cannot be directly interpreted in a probabilistic sense. The uncertainty can instead be represented by studying a discrete set of physically plausible storylines of atmospheric circulation changes. By mining CMIP5 model output, here we take this broader perspective and develop storylines for Southern Hemisphere (SH) midlatitude circulation changes, conditioned on the degree of global-mean warming, based on the climate responses of two remote drivers: the enhanced warming of the tropical upper troposphere and the strengthening of the stratospheric polar vortex. For the three continental domains in the SH, we analyse the precipitation changes under each storyline. To allow comparison with previous studies, we also link both circulation and precipitation changes with those of the Southern Annular Mode. Our results show that the response to tropical warming leads to a strengthening of the midlatitude westerly winds, whilst the response to a delayed breakdown (for DJF) or strengthening (for JJA) of the stratospheric vortex leads to a poleward shift of the westerly winds and the storm tracks. However, the circulation response is not zonally symmetric and the regional precipitation storylines for South America, South Africa, South Australia and New Zealand exhibit quite specific dependencies on the two remote drivers, which are not well represented by changes in the Southern Annular Mode.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Science > School of Mathematical, Physical and Computational Sciences > NCAS
Faculty of Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:89949
Publisher:Springer

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation