Accessibility navigation


Recent trends in summer atmospheric circulation in the North Atlantic/European region: is there a role for anthropogenic aerosols?

Dong, B. ORCID: https://orcid.org/0000-0003-0809-7911 and Sutton, R. T. ORCID: https://orcid.org/0000-0001-8345-8583 (2021) Recent trends in summer atmospheric circulation in the North Atlantic/European region: is there a role for anthropogenic aerosols? Journal Of Climate. ISSN 1520-0442 (In Press)

[img] Text - Accepted Version
· Restricted to Repository staff only
· The Copyright of this document has not been checked yet. This may affect its availability.

8MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1175/JCLI-D-20-0665.1

Abstract/Summary

The variability of the westerly jet stream and storm track is crucial for summer weather and climate in the North Atlantic/European region. Observations for recent decades show notable trends in the summer jet from 1970s to 2010s, characterized by an equatorward migration over the North Atlantic accompanied by a poleward migration and weakening of the Mediterranean jet over Europe. These changes in atmospheric circulation were associated with more cyclonic storms traveling across the UK into northern Europe, and fewer over the Mediterranean, leading to wet summers in northern Europe and dry summers in southern Europe. In this study we investigate the potential drivers and processes that may have been responsible for the observed changes in summer atmospheric circulation, with a particular focus on the role of anthropogenic aerosols (AA). We conduct attribution experiments with an atmospheric general circulation model (AGCM) forced with observed changes in sea surface temperatures/sea ice extent (SST/SIE), greenhouse gas concentrations and AA precursor emissions. Comparison between the model results and observations strongly suggests that fast responses to AA changes were likely the primary driver of the observed poleward migration and weakening of the Mediterranean jet, with changes in SST/SIE playing a secondary role. The simulated response shows good agreement with the observed changes in both magnitude and vertical structure, which suggests that common mechanisms - involving aerosol-radiation and aerosol-cloud interactions - are responsible. By contrast, changes in the North Atlantic jet are influenced in the model experiments by changes in both Atlantic SST/SIE (which may themselves have been influenced by changes in AA) and fast responses to AA. In this case, however, there are significant differences between the model response and the observed changes; we argue these differences may be explained by biases in the model climatology.

Item Type:Article
Refereed:Yes
Divisions:Science > School of Mathematical, Physical and Computational Sciences > NCAS
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:98580
Publisher:American Meteorological Society

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation