Accessibility navigation

Mathematical modelling of human P2X-mediated plasma membrane electrophysiology and calcium dynamics in microglia

Poshtkohi, A. ORCID:, Wade, J. ORCID:, McDaid, L. ORCID:, Liu, J. ORCID:, Dallas, M. ORCID: and Bithell, A. ORCID: (2021) Mathematical modelling of human P2X-mediated plasma membrane electrophysiology and calcium dynamics in microglia. PLOS Computational Biology, 17 (11). e1009520. ISSN 1553-7358

Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.


It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1371/journal.pcbi.1009520


Regulation of cytosolic calcium (Ca2+) dynamics is fundamental to microglial function. Temporal and spatial Ca2+ fluxes are induced from a complicated signal transduction pathway linked to brain ionic homeostasis. In this paper, we develop a novel biophysical model of Ca2+ and sodium (Na+) dynamics in human microglia and evaluate the contribution of purinergic receptors (P2XRs) to both intracellular Ca2+ and Na+ levels in response to agonist/ATP binding. This is the first comprehensive model that integrates P2XRs to predict intricate Ca2+ and Na+ transient responses in microglia. Specifically, a novel compact biophysical model is proposed for the capture of whole-cell patch-clamp currents associated with P2X4 and P2X7 receptors, which is composed of only four state variables. The entire model shows that intricate intracellular ion dynamics arise from the coupled interaction between P2X4 and P2X7 receptors, the Na+/Ca2+ exchanger (NCX), Ca2+ extrusion by the plasma membrane Ca2+ ATPase (PMCA), and Ca2+ and Na+ leak channels. Both P2XRs are modelled as two separate adenosine triphosphate (ATP) gated Ca2+ and Na+ conductance channels, where the stoichiometry is the removal of one Ca2+ for the hydrolysis of one ATP molecule. Two unique sets of model parameters were determined using an evolutionary algorithm to optimise fitting to experimental data for each of the receptors. This allows the proposed model to capture both human P2X7 and P2X4 data (hP2X7 and hP2X4). The model architecture enables a high degree of simplicity, accuracy and predictability of Ca2+ and Na+ dynamics thus providing quantitative insights into different behaviours of intracellular Na+ and Ca2+ which will guide future experimental research. Understanding the interactions between these receptors and other membrane-bound transporters provides a step forward in resolving the qualitative link between purinergic receptors and microglial physiology and their contribution to brain pathology.

Item Type:Article
Divisions:Life Sciences > School of Chemistry, Food and Pharmacy > School of Pharmacy > Division of Pharmacology
ID Code:101255
Uncontrolled Keywords:Research Article, Biology and life sciences, Physical sciences
Publisher:Public Library of Science


Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation