Accessibility navigation


A simplified seasonal forecasting strategy, applied to wind and solar power in Europe

Bett, P. E., Thornton, H. E., Troccoli, A., De Felice, M., Suckling, E., Dubus, L., Saint-Drenan, Y.-M. and Brayshaw, D. J. ORCID: https://orcid.org/0000-0002-3927-4362 (2022) A simplified seasonal forecasting strategy, applied to wind and solar power in Europe. Climate Services, 27. 100318. ISSN 2405-8807

[img]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

4MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1016/j.cliser.2022.100318

Abstract/Summary

We demonstrate levels of skill for forecasts of seasonal-mean wind speed and solar irradiance in Europe, using seasonal forecast systems available from the Copernicus Climate Change Service (C3S). While skill is patchy, there is potential for the development of climate services for the energy sector. Following previous studies, we show that, where there is skill, a simple linear regression-based method using the hindcast and forecast ensemble means provides a straightforward approach for producing calibrated probabilistic seasonal forecasts. This method extends naturally to using a larger-scale feature of the climate, such as the North Atlantic Oscillation, as the climate model predictor, and we show that this provides opportunities to improve the skill in some cases. We further demonstrate that, on seasonal-average and regional (e.g. national) average scales, wind and solar power generation are highly correlated with single climate variables (wind speed and irradiance). The detailed non-linear transformations from meteorological quantities to energy quantities, which are essential for detailed simulation of power system operations, are usually not necessary when forecasting gross wind or solar generation potential at seasonal-mean regional-mean scales. Together, our results demonstrate that where there is skill in seasonal forecasts of wind speed and irradiance, or a correlated larger-scale climate predictor, skilful forecasts of seasonal mean wind and solar power generation can be made based on the climate variable alone, without requiring complex transformations. This greatly simplifies the process of developing a useful seasonal climate service.

Item Type:Article
Refereed:Yes
Divisions:Interdisciplinary centres and themes > Energy Research
Science > School of Mathematical, Physical and Computational Sciences > NCAS
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:106865
Publisher:Elsevier

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation