Accessibility navigation

PiRamid: A compact Raspberry Pi imaging box to automate small-scale time-lapse digital analysis, suitable for laboratory and field use

Long, M. M., Diep, T. T., Needs, S. H., Ross, M. J. and Edwards, A. D. ORCID: (2022) PiRamid: A compact Raspberry Pi imaging box to automate small-scale time-lapse digital analysis, suitable for laboratory and field use. HardwareX, 12. e00377. ISSN 24680672

Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.


It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1016/j.ohx.2022.e00377


Digital imaging permits the quantitation of many experiments, such as microbiological growth assays, but laboratory digital imaging systems can be expensive and too specialised. The Raspberry Pi camera platform makes automated, controlled imaging affordable with accessible customisation. When combined with open source software and open-source 3D printed hardware, the control over image quality and capture of this platform permits the rapid development of novel instrumentation. Here we present "PiRamid", a compact, portable, and inexpensive enclosure for autonomous imaging both in the laboratory and in the field. The modular three-piece 3D printed design makes it easy to incorporate different camera systems or lighting configurations (e.g., single wavelength LED for fluorescence). The enclosed design allows complete control of illumination unlike a conventional digital camera or smartphone, on a tripod or handheld, under ambient lighting. The stackable design permits rapid sample addition or camera focus adjustment, with a corresponding change in magnification and resolution. The entire unit is small enough to fit within a microbiological incubator, and cheap enough (∼£100) to scale out for larger parallel experiments. Simply, Python scripts fully automate illumination and image capture for small-scale experiments with an ∼110×85 mm area at 70-90 µm resolution. We demonstrate the versatility of PiRamid by capturing time-resolved, quantitative image data for a wide range of assays. Bacterial growth kinetics was captured for conventional microbiology (agar Petri dishes), 3D printed custom microbiology labware and microfluidic microbiology. To illustrate application beyond microbiology, we demonstrate time-lapse imaging of crystal growth and degradation of salad leaves. Minor modifications permit epi-illumination by addition of a LED ring to the camera module. We conclude that PiRamid permits inexpensive digital capture and quantitation of a wide range of experiments by time-lapse imaging to simplify both laboratory and field imaging.

Item Type:Article
Divisions:Life Sciences > School of Chemistry, Food and Pharmacy > School of Pharmacy > Pharmaceutics Research Group
ID Code:109329
Uncontrolled Keywords:3D printed, Raspberry Pi, Microbiological testing, Quantitative image data, Time-lapse imaging


Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation