Accessibility navigation


The relationship between sea surface temperature anomalies, wind and translation speed and North Atlantic tropical cyclone rainfall over ocean and land

Hallam, S., McCarthy, G. D., Feng, X. ORCID: https://orcid.org/0000-0003-4143-107X, Josey, S. A., Harris, E., Düsterhus, A., Ogungbenro, S. and Hirschi, J. J.-M. (2023) The relationship between sea surface temperature anomalies, wind and translation speed and North Atlantic tropical cyclone rainfall over ocean and land. Environmental Research Communications, 5 (2). 025007. ISSN 2515-7620

[img]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

1MB
[img] Text - Accepted Version
· Restricted to Repository staff only

2MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1088/2515-7620/acb31c

Abstract/Summary

There have been increasing losses from freshwater flooding associated with United States (US) landfalling hurricanes in recent years. This study analyses the relationship between sea surface temperature anomalies (SSTA), wind and translation speed and North Atlantic tropical cyclone precipitation (TCP) for the period 1998-2017. Based on our statistical analysis of observation data, for a 1 °C SST increase in the main development region (MDR), there is a 6% increase (not statistically significant) in the TCP rate (mmhr−1) over the Atlantic, which rises to over 40% over land (US states) and appears linked not only to the Clausius-Clapeyron relationship but also to the increase in tropical cyclone (TC) intensity associated with increasing SSTA. Total annual TCP is significantly correlated with the SST in the MDR. Over the Atlantic there is an increase of 116% and over land there is an increase of 140% in total TCP for a 1 °C rise in SST in the MDR. Again, this is linked to the increase in windspeed and the number of TC tracks which also rises with positive SSTAs in the MDR. Our analysis of landfalling TC tracks for nine US states provides a systematic review and highlights how TCP varies by US state. The highest number of landfalls per year are found in Florida, North Carolina and Texas. The median tropical cyclone translation speed is 20.3kmhr−1, although this falls to 16.5 kmhr−1 over land and there is a latitudinal dependence on translation speed. Overall, we find a different TCP response to rising SST over the ocean and land, with the response over land over four times more than the Clausius-Clapeyron rate. The links between SSTA in the MDR and both TCP rate and annual total TCP provide useful insights for seasonal to decadal US flood prediction from TCs.

Item Type:Article
Refereed:Yes
Divisions:Science > School of Mathematical, Physical and Computational Sciences > NCAS
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:109401
Publisher:IOP Science

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation