Accessibility navigation


The modelled climatic response to the 18.6-year lunar nodal cycle and its role in decadal temperature trends

Joshi, M. ORCID: https://orcid.org/0000-0002-2948-2811, Hall, R. A. ORCID: https://orcid.org/0000-0002-3665-6322, Stevens, D. P. ORCID: https://orcid.org/0000-0002-7283-4405 and Hawkins, E. ORCID: https://orcid.org/0000-0001-9477-3677 (2023) The modelled climatic response to the 18.6-year lunar nodal cycle and its role in decadal temperature trends. Earth System Dynamics, 14 (2). pp. 443-455. ISSN 2190-4987

[img]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

9MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.5194/esd-14-443-2023

Abstract/Summary

The 18.6-year lunar nodal cycle arises from variations in the angle of the Moon's orbital plane. Previous work has linked the nodal cycle to climate but has been limited by either the length of observations analysed or geographical regions considered in model simulations of the pre-industrial period. Here we examine the global effect of the lunar nodal cycle in multi-centennial climate model simulations of the pre-industrial period. We find cyclic signals in global and regional surface air temperature (with amplitudes of around 0.1 K) and in ocean heat uptake and ocean heat content. The timing of anomalies of global surface air temperature and heat uptake is consistent with the so-called slowdown in global warming in the first decade of the 21st century. The lunar nodal cycle causes variations in mean sea level pressure exceeding 0.5 hPa in the Nordic Seas region, thus affecting the North Atlantic Oscillation during boreal winter. Our results suggest that the contribution of the lunar nodal cycle to global temperature should be negative in the mid-2020s before becoming positive again in the early 2030s, reducing the uncertainty in time at which projected global temperature reaches 1.5 ∘C above pre-industrial levels.

Item Type:Article
Refereed:Yes
Divisions:Science > School of Mathematical, Physical and Computational Sciences > NCAS
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:111634
Publisher:European Geosciences Union

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation