1 Forker, A., Zahn, S. & Rohm, H. A Combination of Fat Replacers Enables the Production of Fat-reduced Shortdough Biscuits with High-sensory quality. Food and bioprocess technology 5, 2497-2505, doi:10.1007/s11947-011-0536-4 (2011).
2 Singh, P., Singh, R., Jha, A., Rasane, P. & Gautam, A. K. Optimization of a process for high fibre and high protein biscuit. Journal of food science and technology 52, 1394-1403 (2015).
3 Manley, D. Manley's Technology of Biscuits, Crackers and Cookies. (Elsevier Science & Technology, 2011).
4 Edwards, W. P. The science of bakery products. (Royal Society of chemistry, 2007).
5 Pareyt, B. & Delcour, J. A. The Role of Wheat Flour Constituents, Sugar, and Fat in Low Moisture Cereal Based Products: A Review on Sugar-Snap Cookies. Critical reviews in food science and nutrition 48, 824-839, doi:10.1080/10408390701719223 (2008).
6 Gisslen, W. Professional baking. (John Wiley & Sons, 2012).
7 SACN. Saturated fats and health: SACN report, <report:https://www.gov.uk/government/publications/saturated-fats-and-health-sacn-report > (2019).
8 Buckland, G. et al. Olive oil intake and mortality within the Spanish population (EPIC-Spain). American Journal of Clinical Nutrition 96, 142-149, doi:10.3945/ajcn.111.024216 (2012).
9 Ebbesson, S. O. E. et al. Fatty acids linked to cardiovascular mortality are associated with risk factors. International Journal of Circumpolar Health 74, 28055-28011, doi:10.3402/ijch.v74.28055 (2015).
10 Department of Health & Social Care. Restricting promotions of products high in fat, sugar and salt by location and by price: gevernment response to public consultation, <https://www.gov.uk/government/consultations/restricting-promotions-of-food-and-drink-that-is-high-in-fat-sugar-and-salt/outcome/restricting-promotions-of-products-high-in-fat-sugar-and-salt-by-location-and-by-price-government-response-to-public-consultation> (2021).
11 Akoh, C. C. Fat replacers. Food technology (USA) (1998).
12 Peng, X. & Yao, Y. Carbohydrates as Fat Replacers. Annual Review of Food Science and Technology 8, 331-351, doi:10.1146/annurev-food-030216-030034 (2017).
13 Swanson, B. G. Fat replacers: mimetics and substitutes. NUTRACEUTICAL SCIENCE AND TECHNOLOGY 5, 329 (2006).
14 Chugh, B., Singh, G. & Kumbhar, B. Studies on the Optimization and Stability of Low-Fat Biscuit Using Carbohydrate-Based Fat Replacers. International Journal of Food Properties 18, 1446-1459 (2015).
15 Laguna, L., Primo-Martín, C., Varela, P., Salvador, A. & Sanz, T. HPMC and inulin as fat replacers in biscuits: Sensory and instrumental evaluation. LWT - Food Science and Technology 56, 494-501, doi:http://dx.doi.org/10.1016/j.lwt.2013.12.025 (2014).
16 Curti, E. et al. Structured emulsions as butter substitutes: effects on physicochemical and sensory attributes of shortbread cookies. Journal of the science of food and agriculture 98, 3836-3842, doi:10.1002/jsfa.8899 (2018).
17 Jang, A., Bae, W., Hwang, H.-S., Lee, H. G. & Lee, S. Evaluation of canola oil oleogels with candelilla wax as an alternative to shortening in baked goods. Food Chemistry 187, 525-529, doi:https://doi.org/10.1016/j.foodchem.2015.04.110 (2015).
18 Mert, B. & Demirkesen, I. Evaluation of highly unsaturated oleogels as shortening replacer in a short dough product. Food science & technology 68, 477-484, doi:10.1016/j.lwt.2015.12.063 (2016).
19 Onacik-Gür, S. & Żbikowska, A. Effect of high-oleic rapeseed oil oleogels on the quality of short-dough biscuits and fat migration. Journal of food science and technology 57, 1609-1618, doi:10.1007/s13197-019-04193-8 (2020).
20 Devi, A. & Khatkar, B. S. Effects of fatty acids composition and microstructure properties of fats and oils on textural properties of dough and cookie quality. Journal of food science and technology 55, 321-330, doi:10.1007/s13197-017-2942-8 (2017).
21 Jacob, J. & Leelavathi, K. Effect of fat-type on cookie dough and cookie quality. Journal of Food Engineering 79, 299-305, doi:http://dx.doi.org/10.1016/j.jfoodeng.2006.01.058 (2007).
22 Onacik-Gür, S., Żbikowska, A. & Jaroszewska, A. Effect of high-oleic sunflower oil and other pro-health ingredients on physical and sensory properties of biscuits. CYTA: journal of food 13, 621-628, doi:10.1080/19476337.2015.1032358 (2015).
23 Sanz, T., Quiles, A., Salvador, A. & Hernando, I. Structural changes in biscuits made with cellulose emulsions as fat replacers. Food science and technology international 23, 480-489, doi:10.1177/1082013217703273 (2017).
24 Tarancón, P., Salvador, A. & Sanz, T. Sunflower Oil–Water–Cellulose Ether Emulsions as Trans-Fatty Acid-Free Fat Replacers in Biscuits: Texture and Acceptability Study. Food and Bioprocess Technology 6, 2389-2398, doi:10.1007/s11947-012-0878-6 (2013).
25 Giarnetti, M., Paradiso, V. M., Caponio, F., Summo, C. & Pasqualone, A. Fat replacement in shortbread cookies using an emulsion filled gel based on inulin and extra virgin olive oil. LWT - Food Science and Technology 63, 339-345, doi:10.1016/j.lwt.2015.03.063 (2015).
26 Choe, E. & Min, D. B. Mechanisms and factors for edible oil oxidation. Comprehensive reviews in food science and food safety 5, 169-186 (2006).
27 Patrignani, M., Conforti, P. A. & Lupano, C. E. The role of lipid oxidation on biscuit texture during storage. International journal of food science & technology 49, 1925-1931, doi:10.1111/ijfs.12550 (2014).
28 Komaiko, J. S. & McClements, D. J. Formation of food‐grade nanoemulsions using low‐energy preparation methods: a review of available methods. Comprehensive Reviews in Food Science and Food Safety 15, 331-352, doi:10.1111/1541-4337.12189 (2016).
29 Kim, S. O., Ha, T. V. A., Choi, Y. J. & Ko, S. Optimization of homogenization–evaporation process for lycopene nanoemulsion production and its beverage applications. Journal of Food Science 79, N1604-N1610, doi:10.1111/1750-3841.12472 (2014).
30 Mason, T. G., Wilking, J. N., Meleson, K., Chang, C. B. & Graves, S. M. Nanoemulsions: formation, structure, and physical properties. Journal of Physics: Condensed Matter 18, R635-R666, doi:10.1088/0953-8984/18/41/R01 (2006).
31 Morley, W. in Reducing Saturated Fats in Foods 131-157 (Elsevier, 2011).
32 Pathakoti, K., Manubolu, M. & Hwang, H.-M. Nanostructures: Current uses and future applications in food science. Journal of Food and Drug Analysis 25, 245-253, doi:10.1016/j.jfda.2017.02.004 (2017).
33 McClements, D. J. & Jafari, S. M. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Advances in Colloid and Interface Science 251, 55-79, doi:10.1016/j.cis.2017.12.001 (2018).
34 Klang, V. & Valenta, C. Lecithin-based nanoemulsions. Journal of Drug Delivery Science and Technology 21, 55-76, doi:10.1016/S1773-2247(11)50006-1 (2011).
35 Bueschelberger, H. G. Lecithins. Emulsifiers in food technology 2 (2004).
36 McClements, D. J. in Food emulsions: principles, practices, and techniques (ed David Julian McClements) (CRC press, 2016).
37 Yoo, Y. J. & Um, I. C. Examination of thermo-gelation behavior of HPMC and HEMC aqueous solutions using rheology. Korea Australia Rheology Journal 25, 67-75, doi:10.1007/s13367-013-0007-8 (2013).
38 Li, X., Al-Assaf, S., Fang, Y. & Phillips, G. O. Competitive adsorption between sugar beet pectin (SBP) and hydroxypropyl methylcellulose (HPMC) at the oil/water interface. Carbohydrate Polymers 91, 573-580, doi:10.1016/j.carbpol.2012.08.075 (2013).
39 Kampa, J., Frazier, R. & Rodriguez-Garcia, J. Development of Saturated Fat Replacers: Conventional and Nano-Emulsions Stabilised by Lecithin and Hydroxylpropyl Methylcellulose. Foods 11, 2536 (2022).
40 Kampa, J., Koidis, A., Ghawi, S. K., Frazier, R. A. & Rodriguez-Garcia, J. Optimisation of the physicochemical stability of extra virgin olive oil-in-water nanoemulsion: processing parameters and stabiliser type. European Food Research and Technology 248, 2765-2777, doi:10.1007/s00217-022-04088-7 (2022).
41 Arancibia, C., Navarro-Lisboa, R., Zúñiga, R. N. & Matiacevich, S. Application of CMC as thickener on nanoemulsions based on olive oil: Physical properties and stability. International Journal of Polymer Science 2016, 1-10, doi:10.1155/2016/6280581 (2016).
42 Taha, A. et al. Effect of different oils and ultrasound emulsification conditions on the physicochemical properties of emulsions stabilized by soy protein isolate. Ultrasonics - Sonochemistry 49, 283-293, doi:10.1016/j.ultsonch.2018.08.020 (2018).
43 Rodriguez-Garcia, J., Laguna, L., Puig, A., Salvador, A. & Hernando, I. Effect of Fat Replacement by Inulin on Textural and Structural Properties of Short Dough Biscuits. Food and Bioprocess Technology 6, 2739-2750, doi:10.1007/s11947-012-0919-1 (2013).
44 Rønholt, S., Mortensen, K. & Knudsen, J. C. The Effective Factors on the Structure of Butter and Other Milk Fat-Based Products. Comprehensive Reviews in Food Science and Food Safety 12, 468-482, doi:https://doi.org/10.1111/1541-4337.12022 (2013).
45 Culetu, A., Stoica‐Guzun, A. & Duta, D. E. Impact of fat types on the rheological and textural properties of gluten‐free oat dough and cookie. International journal of food science & technology 56, 126-137, doi:10.1111/ijfs.14611 (2021).
46 Lai, H. & Lin, T. Bakery products: science and technology. Bakery products: Science and technology, 3-65 (2006).
47 Manley, D. in Manley’s Technology of Biscuits, Crackers and Cookies 13-22 (Elsevier, 2011).
48 Onacik-Gur, S. & Zbikowska, A. Effect of high-oleic rapeseed oil oleogels on the quality of short-dough biscuits and fat migration. Journal of Food Science and Technology-Mysore 57, 1609-1618, doi:10.1007/s13197-019-04193-8 (2020).
49 Liu, S. Q., Joshi, S. C. & Lam, Y. C. Effects of salts in the Hofmeister series and solvent isotopes on the gelation mechanisms for hydroxypropylmethylcellulose hydrogels. Journal of Applied Polymer Science 109, 363-372, doi:10.1002/app.28079 (2008).
50 Ogawa, S., Decker, E. A. & McClements, D. J. Influence of Environmental Conditions on the Stability of Oil in Water Emulsions Containing Droplets Stabilized by Lecithin−Chitosan Membranes. Journal of agricultural and food chemistry 51, 5522-5527, doi:10.1021/jf026103d (2003).
51 Guarda, A., Rosell, C. M., Benedito, C. & Galotto, M. J. Different hydrocolloids as bread improvers and antistaling agents. Food hydrocolloids 18, 241-247, doi:10.1016/S0268-005X(03)00080-8 (2004).
52 Poonnakasem, N., Laohasongkram, K., Chaiwanichsiri, S. & Prinyawiwatkul, W. Changes in physicochemical properties and starch crystallinity of sponge cake containing HPMC and extra virgin coconut oil during room temperature storage. Journal of food processing and preservation 42, e13600-n/a, doi:10.1111/jfpp.13600 (2018).
53 Lim, C. et al. Adaptive amphiphilic interaction mechanism of hydroxypropyl methylcellulose in water. Applied surface science 565, doi:10.1016/j.apsusc.2021.150535 (2021).
54 Bodvik, R. et al. Aggregation and network formation of aqueous methylcellulose and hydroxypropylmethylcellulose solutions. Colloids and surfaces. A, Physicochemical and engineering aspects 354, 162-171, doi:10.1016/j.colsurfa.2009.09.040 (2010).
55 Zoulias, E. I., Oreopoulou, V. & Kounalaki, E. Effect of fat and sugar replacement on cookie properties. Journal of the science of food and agriculture 82, 1637-1644, doi:10.1002/jsfa.1230 (2002).
56 Sanz, T., Laguna, L. & Salvador, A. Biscuit dough structural changes during heating: Influence of shortening and cellulose ether emulsions. LWT - Food Science and Technology 62, 962-969, doi:10.1016/j.lwt.2015.02.036 (2015).
57 Sciarini, L. S., Van Bockstaele, F., Nusantoro, B., Pérez, G. T. & Dewettinck, K. Properties of sugar-snap cookies as influenced by lauric-based shortenings. Journal of Cereal Science 58, 234-240, doi:https://doi.org/10.1016/j.jcs.2013.07.005 (2013).
58 Chevallier, S., Colonna, P., Della Valle, G. & Lourdin, D. Contribution of Major Ingredients during Baking of Biscuit Dough Systems. Journal of Cereal Science 31, 241-252, doi:https://doi.org/10.1006/jcrs.2000.0308 (2000).
59 Baltsavias, A., Jurgens, A. & van Vliet, T. Fracture Properties of Short-Dough Biscuits: Effect of Composition. Journal of Cereal Science 29, 235-244, doi:https://doi.org/10.1006/jcrs.1999.0249 (1999).
60 Bousquières, J., Michon, C. & Bonazzi, C. Functional properties of cellulose derivatives to tailor a model sponge cake using rheology and cellular structure analysis. Food hydrocolloids 70, 304-312, doi:10.1016/j.foodhyd.2017.04.010 (2017).
61 Pastor, C., Sánchez-González, L., Cháfer, M., Chiralt, A. & González-Martínez, C. Physical and antifungal properties of hydroxypropylmethylcellulose based films containing propolis as affected by moisture content. Carbohydrate polymers 82, 1174-1183, doi:10.1016/j.carbpol.2010.06.051 (2010).
62 Choi, W. S., Singh, S. & Lee, Y. S. Characterization of edible film containing essential oils in hydroxypropyl methylcellulose and its effect on quality attributes of ‘Formosa’ plum (Prunus salicina L.). Food science & technology 70, 213-222, doi:10.1016/j.lwt.2016.02.036 (2016).
63 Paneras, E. D., Bloukas, J. G. & Papadima, S. N. Effect of Meat Source and Fat Level on Processing and Quality Characteristics of Frankfurters. Food science & technology 29, 507-514, doi:10.1006/fstl.1996.0078 (1996).
64 Romeih, E. A., Michaelidou, A., Biliaderis, C. G. & Zerfiridis, G. K. Low-fat white-brined cheese made from bovine milk and two commercial fat mimetics: chemical, physical and sensory attributes. International dairy journal 12, 525-540, doi:10.1016/S0958-6946(02)00043-2 (2002).
65 Chabanet, C., Tarrega, A., Septier, C., Siret, F. & Salles, C. Fat and salt contents affect the in-mouth temporal sodium release and saltiness perception of chicken sausages. Meat science 94, 253-261, doi:10.1016/j.meatsci.2012.09.023 (2013).