Accessibility navigation


West African monsoon system's responses to global ocean-regional atmosphere coupling

Tamoffo, A. T., Weber, T., Cabos, W., Monerie, P.-A. ORCID: https://orcid.org/0000-0002-5304-9559, Cook, K. H., Sein, D. V., Dosio, A., Klutse, N. A. B., Akintomide, A. A. and Jacob, D. (2024) West African monsoon system's responses to global ocean-regional atmosphere coupling. Journal of Climate. ISSN 1520-0442

[img] Text - Accepted Version
· Restricted to Repository staff only until 22 November 2024.

5MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1175/JCLI-D-23-0749.1

Abstract/Summary

This study explores the added value (AV) of a regional earth system model (ESM) compared to an atmosphere-only regional climate model (RCM) in simulating West African Monsoon (WAM) rainfall. The primary goals are to foster discussions on the suitability of coupled RCMs for WAM projections and deepen our understanding of ocean-atmosphere coupling's influence on the WAM system. The study employs results from dynamical downscaling of the ERA-Interim reanalysis and Max Plank Institute ESM (MPI-ESM-LR) by two RCMs, REMO (atmosphere-only) and ROM (REMO coupled with Max Planck Institute Ocean Model; MPIOM), at ∼25-km horizontal resolution. Results show that in regions distant from coupling domain boundaries such as West Africa (WA), constraint conditions from ERA-Interim are more beneficial than coupling effects. REMO, reliant on oceanic sea surface temperatures (SSTs) from observations and influenced by ERA-Interim, is biased under coupling conditions, although coupling offers potential advantages in representing heat and mass fluxes. Contrastingly, as intended, coupling improves SSTs-monsoon fluxes' relationships under ESM-forced conditions. In this latter case, coupling features a dipole-like spatial structure of AV, improving precipitation over the Guinean coast but degrading precipitation over half of the Sahel. Our extensive examination of physical processes and mechanisms underpinning the WAM system supports the plausibility of AV. Additionally, we found that the monsoonal dynamics over the ocean respond to convective activity, with the Sahara-Sahel surface temperature gradient serving as the maintenance mechanism. While further efforts are needed to enhance the coupled RCM, we advocate for its use in the context of WAM rainfall forecasts and projections.

Item Type:Article
Refereed:Yes
Divisions:Science > School of Mathematical, Physical and Computational Sciences > NCAS
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:116590
Publisher:American Meteorological Society

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation