Balla T. Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiological reviews.
2013;93(3):1019-137.
Burke JE. Structural basis for regulation of phosphoinositide kinases and their involvement in human disease.
Molecular cell. 2018;71(5):653-73.
Dickson EJ, Hille B. Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids.
Biochemical Journal. 2019;476(1):1-23.
Narang A, Subramanian K, Lauffenburger D. A mathematical model for chemoattractant gradient sensing based
on receptor-regulated membrane phospholipid signaling dynamics. Annals of biomedical engineering.
2001;29(8):677-91.
Dawes AT, Edelstein-Keshet L. Phosphoinositides and Rho proteins spatially regulate actin polymerization to
initiate and maintain directed movement in a one-dimensional model of a motile cell. Biophysical journal.
2007;92(3):744-68.
Purvis JE, Chatterjee MS, Brass LF, Diamond SL. A molecular signaling model of platelet phosphoinositide and
calcium regulation during homeostasis and P2Y1 activation. Blood, The Journal of the American Society of
Hematology. 2008;112(10):4069-79.
Song SO, Varner J. Modeling and analysis of the molecular basis of pain in sensory neurons. PLoS One.
2009;4(9):e6758.
Alam-Nazki A, Krishnan J. A mathematical modelling framework for understanding chemorepulsive signal
transduction in Dictyostelium. Journal of theoretical biology. 2010;266(1):140-53.
Cheung HYF, Coman C, Westhoff P, Manke M, Sickmann A, Borst O, et al. Targeted phosphoinositides analysis
using high-performance ion chromatography-coupled selected reaction monitoring mass spectrometry. Journal
of Proteome Research. 2021;20(6):3114-23.
Olivença DV, Uliyakina I, Fonseca LL, Amaral MD, Voit EO, Pinto FR. A mathematical model of the
phosphoinositide pathway. Scientific reports. 2018;8(1):1-12.
Falkenburger BH, Jensen JB, Hille B. Kinetics of M1 muscarinic receptor and G protein signaling to
phospholipase C in living cells. Journal of General Physiology. 2010;135(2):81-97.
Falkenburger BH, Dickson EJ, Hille B. Quantitative properties and receptor reserve of the DAG and PKC
branch of Gq-coupled receptor signaling. Journal of General Physiology. 2013;141(5):537-55.
Dickson EJ, Falkenburger BH, Hille B. Quantitative properties and receptor reserve of the IP3 and calcium
branch of Gq-coupled receptor signaling. Journal of General Physiology. 2013;141(5):521-35.
Suratekar R, Panda A, Raghu P, Krishna S. Evidence of sinks and sources in the phospholipase C-activated PIP
2 cycle. FEBS letters. 2018;592(6):962-72.
Mazet F, Tindall MJ, Gibbins JM, Fry MJ. A model of the PI cycle reveals the regulating roles of lipid-binding
proteins and pitfalls of using mosaic biological data. Scientific Reports. 2020;10(1):13244.
Dunster JL, Mazet F, Fry MJ, Gibbins JM, Tindall MJ. Regulation of early steps of GPVI signal transduction by
phosphatases: a systems biology approach. PLoS computational biology. 2015;11(11):e1004589.
Min SH, Abrams CS. Regulation of platelet plug formation by phosphoinositide metabolism. Blood, The
Journal of the American Society of Hematology. 2013;122(8):1358-65.
Mujalli A, Chicanne G, Bertrand-Michel J, Viars F, Stephens L, Hawkins P, et al. Profiling of phosphoinositide
molecular species in human and mouse platelets identifies new species increasing following stimulation.
Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2018;1863(9):1121-31.
Nylander S, Kull B, Björkman J, Ulvinge J, Oakes N, Emanuelsson B, et al. Human target validation of
phosphoinositide 3-kinase (PI3K) β: effects on platelets and insulin sensitivity, using AZD6482 a novel PI3Kβ
inhibitor. Journal of Thrombosis and Haemostasis. 2012;10(10):2127-36.
Kielkowska A, Niewczas I, Anderson KE, Durrant TN, Clark J, Stephens LR, et al. A new approach to
measuring phosphoinositides in cells by mass spectrometry. Advances in biological regulation. 2014;54:131-41.
Bura A, Jurak Begonja A. Imaging of Intracellular and Plasma Membrane Pools of PI (4, 5) P2 and PI4P in
Human Platelets. Life. 2021;11(12):1331.
Gilio K, Munnix IC, Mangin P, Cosemans JM, Feijge MA, Van der Meijden PE, et al. Non-redundant roles of 459
phosphoinositide 3-kinase isoforms αand βin glycoprotein VI-induced platelet signaling and thrombus
formation. Journal of Biological Chemistry. 2009;284(49):33750-62.
Gibbins JM, Briddon S, Shutes A, van Vugt MJ, van de Winkel JG, Saito T, et al. The p85 subunit of
phosphatidylinositol 3-kinase associates with the Fc receptor γ-chain and linker for activitor of T cells (LAT) in
platelets stimulated by collagen and convulxin. Journal of Biological Chemistry. 1998;273(51):34437-43.
Watson S, Auger J, McCarty O, Pearce A. GPVI and integrin αIIbβ3 signaling in platelets. Journal of
Thrombosis and Haemostasis. 2005;3(8):1752-62.
Bye AP, Unsworth AJ, Gibbins JM. Platelet signaling: a complex interplay between inhibitory and activatory
networks. Journal of Thrombosis and Haemostasis. 2016;14(5):918-30.
Voit EO. Biochemical systems theory: a review. International Scholarly Research Notices.
2013;2013(1):897658.
Lagarde M, Guichardant M, Menashi S, Crawford N. The phospholipid and fatty acid composition of human
platelet surface and intracellular membranes isolated by high voltage free flow electrophoresis. Journal of
Biological Chemistry. 1982;257(6):3100-4.
Morris JB, Hinchliffe KA, Ciruela A, Letcher AJ, Irvine RF. Thrombin stimulation of platelets causes an
increase in phosphatidylinositol 5-phosphate revealed by mass assay. FEBS letters. 2000;475(1):57-60.
Chicanne G, Severin S, Boscheron C, Terrisse AD, Gratacap MP, Gaits-Iacovoni F, et al. A novel mass assay to
quantify the bioactive lipid PtdIns3 P in various biological samples. Biochemical Journal. 2012;447(1):17-23.
Binder H, Weber PC, Siess W. Separation of inositol phosphates and glycerophosphoinositol phosphates by
high-performance liquid chromatography. Analytical biochemistry. 1985;148(1):220-7.
Giuriato S, Pesesse X, Bodin S, Sasaki T, Viala C, Marion E, et al. SH2-containing inositol 5-phosphatases 1
and 2 in blood platelets: their interactions and roles in the control of phosphatidylinositol 3, 4, 5-trisphosphate
levels. Biochemical journal. 2003;376(1):199-207.
Chari R, Kim S, Murugappan S, Sanjay A, Daniel JL, Kunapuli SP. Lyn, PKC-δ, SHIP-1 interactions regulate
GPVI-mediated platelet-dense granule secretion. Blood, The Journal of the American Society of Hematology.
2009;114(14):3056-63.
Weernink PAO, Meletiadis K, Hommeltenberg S, Hinz M, Ishihara H, Schmidt M, et al. Activation of type I
phosphatidylinositol 4-phosphate 5-kinase isoforms by the Rho GTPases, RhoA, Rac1, and Cdc42. Journal of
Biological Chemistry. 2004;279(9):7840-9.
Di Paolo G, De Camilli P. Phosphoinositides in cell regulation and membrane dynamics. Nature.
2006;443(7112):651-7.
Posor Y, Jang W, Haucke V. Phosphoinositides as membrane organizers. Nature Reviews Molecular Cell
Biology. 2022:1-20.
Zhao L, Thorsheim CL, Suzuki A, Stalker TJ, Min SH, Lian L, et al. Phosphatidylinositol transfer protein-αin
platelets is inconsequential for thrombosis yet is utilized for tumor metastasis. Nature communications.
2017;8(1):1-12.
Lemmon MA. Membrane recognition by phospholipid-binding domains. Nature reviews Molecular cell biology.
2008;9(2):99-111.
Bye A, Gibbins J. Move along, nothing to see here: Btk inhibitors stop platelets sticking to plaques. Journal of
Thrombosis and Haemostasis. 2018;16(8):1461-3.
Wang Q, Pechersky Y, Sagawa S, Pan AC, Shaw DE. Structural mechanism for Bruton’s tyrosine kinase
activation at the cell membrane. Proceedings of the National Academy of Sciences. 2019;116(19):9390-9.
McLaughlin S, Murray D. Plasma membrane phosphoinositide organization by protein electrostatics. Nature.
2005;438(7068):605-11.
Jahan KS, Shi J, Greenberg HZ, Khavandi S, Baudel MMA, Barrese V, et al. MARCKS mediates vascular
contractility through regulating interactions between voltage-gated Ca2+ channels and PIP2. Vascular
pharmacology. 2020;132:106776.
Stefan CJ, Manford AG, Baird D, Yamada-Hanff J, Mao Y, Emr SD. Osh proteins regulate phosphoinositide
metabolism at ER-plasma membrane contact sites. Cell. 2011;144(3):389-401.
Yamamoto K, Graziani A, Carpenter C, Cantley L, Lapetina E. A novel pathway for the formation of
phosphatidylinositol 3, 4-bisphosphate. Phosphorylation of phosphatidylinositol 3-monophosphate by
phosphatidylinositol-3-monophosphate 4-kinase. Journal of Biological Chemistry. 1990;265(36):22086-9.
Graziani A, Ling L, Endemann G, Carpenter C, Cantley L. Purification and characterization of human
erythrocyte phosphatidylinositol 4-kinase. Phosphatidylinositol 4-kinase and phosphatidylinositol
3-monophosphate 4-kinase are distinct enzymes. Biochemical Journal. 1992;284(1):39-45.
Selvadurai MV, Moon MJ, Mountford SJ, Ma X, Zheng Z, Jennings IG, et al. Disrupting the platelet internal
membrane via PI3KC2αinhibition impairs thrombosis independently of canonical platelet activation. Science
Translational Medicine. 2020;12(553):eaar8430.
Peng B, Geue S, Coman C, Münzer P, Kopczynski D, Has C, et al. Identification of key lipids critical for platelet
activation by comprehensive analysis of the platelet lipidome. Blood, The Journal of the American Society of
Hematology. 2018;132(5):e1-e12.
Kramer RM, Sharp JD. Structure, function and regulation of Ca2+-sensitive cytosolic phospholipase A2
(cPLA2). FEBS letters. 1997;410(1):49-53.
Watson SP, Lapetina EG. 1, 2-Diacylglycerol and phorbol ester inhibit agonist-induced formation of inositol
phosphates in human platelets: possible implications for negative feedback regulation of inositol phospholipid
hydrolysis. Proceedings of the National Academy of Sciences. 1985;82(9):2623-6.
Watson SP, Reep B, McCONNELL RT, Lapetina EG. Collagen stimulates [3H] inositol trisphosphate formation
in indomethacin-treated human platelets. Biochemical Journal. 1985;226(3):831-7.
Anderson D, Burnham K, White G. Comparison of Akaike information criterion and consistent Akaike
information criterion for model selection and statistical inference from capture-recapture studies. Journal of
Applied Statistics. 1998;25(2):263-82.
Chen W, Thielmann I, Gupta S, Subramanian H, Stegner D, Van Kruchten R, et al. Orai1-induced store-operated
Ca2+ entry enhances phospholipase activity and modulates canonical transient receptor potential channel 6
function in murine platelets. Journal of Thrombosis and Haemostasis. 2014;12(4):528-39.
Valet C, Chicanne G, Severac C, Chaussade C, Whitehead MA, Cabou C, et al. Essential role of class II
PI3K-C2αin platelet membrane morphology. Blood, The Journal of the American Society of Hematology.
2015;126(9):1128-37.
Burke JE, Triscott J, Emerling BM, Hammond GR. Beyond PI3Ks: targeting phosphoinositide kinases in
disease. Nature Reviews Drug Discovery. 2022:1-30.
Bojjireddy N, Botyanszki J, Hammond G, Creech D, Peterson R, Kemp DC, et al. Pharmacological and genetic
targeting of the PI4KA enzyme reveals its important role in maintaining plasma membrane phosphatidylinositol
4-phosphate and phosphatidylinositol 4, 5-bisphosphate levels. Journal of Biological Chemistry.
2014;289(9):6120-32.
Hawkins PT, Michell RH, Kirk C. Analysis of the metabolic turnover of the individual phosphate groups of
phosphatidylinositol 4-phosphate and phosphatidylinositol 4, 5-bisphosphate. Validation of novel analytical
techniques by using 32P-labelled lipids from erythrocytes. Biochemical Journal. 1984;218(3):785-93.
Downes P, Michell RH. Phosphatidylinositol 4-phosphate and phosphatidylinositol 4, 5-bisphosphate: lipids in
search of a function. Cell Calcium. 1982;3(4-5):467-502.
Jensen JB, Falkenburger BH, Dickson EJ, de la Cruz L, Dai G, Myeong J, et al. Biophysical physiology of
phosphoinositide rapid dynamics and regulation in living cells. Journal of General Physiology.
2022;154(6):e202113074.