A novel method for measuring lag times in division of individual bacterial cells using image analysisNiven, G.W., Fuks, T., Morton, J.S., Rua, S.A.C.G. and Mackey, B.M. (2006) A novel method for measuring lag times in division of individual bacterial cells using image analysis. Journal of Microbiological Methods, 65 (2). pp. 311-317. ISSN 0167-7012 Full text not archived in this repository. It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1016/j.mimet.2005.08.006 Abstract/SummaryA method is presented for determining the time to first division of individual bacterial cells growing on agar media. Bacteria were inoculated onto agar-coated slides and viewed by phase-contrast microscopy. Digital images of the growing bacteria were captured at intervals and the time to first division estimated by calculating the "box area ratio". This is the area of the smallest rectangle that can be drawn around an object, divided by the area of the object itself. The box area ratios of cells were found to increase suddenly during growth at a time that correlated with cell division as estimated by visual inspection of the digital images. This was caused by a change in the orientation of the two daughter cells that occurred when sufficient flexibility arose at their point of attachment. This method was used successfully to generate lag time distributions for populations of Escherichia coli, Listeria monocytogenes and Pseudomonas aeruginosa, but did not work with the coccoid organism Staphylococcus aureus. This method provides an objective measure of the time to first cell division, whilst automation of the data processing allows a large number of cells to be examined per experiment. (c) 2005 Elsevier B.V. All rights reserved.
Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |