Accessibility navigation

Investigation of the effects of the novel anticonvulsant compound carisbamate(RWJ-333369) on rat piriform cortical neurones in vitro

Whalley, B. J., Stephens, G. J. ORCID: and Constanti, A. (2009) Investigation of the effects of the novel anticonvulsant compound carisbamate(RWJ-333369) on rat piriform cortical neurones in vitro. British Journal of Pharmacology, 156 (6). pp. 994-1008. ISSN 0007-1188

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1111/j.1476-5381.2008.00110.x


Background and purpose: Carisbamate is being developed for adjuvant treatment of partial onset epilepsy. Carisbamate produces anticonvulsant effects in primary generalized, complex partial and absence-type seizure models, and exhibits neuroprotective and antiepileptogenic properties in rodent epilepsy models. Phase IIb clinical trials of carisbamate demonstrated efficacy against partial onset seizures; however, its mechanisms of action remain unknown. Here, we report the effects of carisbamate on membrane properties, evoked and spontaneous synaptic transmission and induced epileptiform discharges in layer II-III neurones in piriform cortical brain slices. Experimental approach: Effects of carisbamate were investigated in rat piriform cortical neurones by using intracellular electrophysiological recordings. Key results: Carisbamate (50–400 mmol·L-1) reversibly decreased amplitude, duration and rise-time of evoked action potentials and inhibited repetitive firing, consistent with use-dependent Na+ channel block; 150–400 mmol·L-1 carisbamate reduced neuronal input resistance, without altering membrane potential. After microelectrode intracellular Cl- loading, carisbamate depolarized cells, an effect reversed by picrotoxin. Carisbamate (100–400 mmol·L-1) also selectively depressed lateral olfactory tract-afferent evoked excitatory synaptic transmission (opposed by picrotoxin), consistent with activation of a presynaptic Cl conductance. Lidocaine (40–320 mmol·L-1) mimicked carisbamate, implying similar modes of action. Carisbamate (300–600 mmol·L-1) had no effect on spontaneous GABAA miniature inhibitory postsynaptic currents and at lower concentrations (50–200 mmol·L-1) inhibited Mg2+-free or 4-aminopyridine-induced seizure-like discharges. Conclusions and implications: Carisbamate blocked evoked action potentials use-dependently, consistent with a primary action on Na+ channels and increased Cl- conductances presynaptically and, under certain conditions, postsynaptically to selectively depress excitatory neurotransmission in piriform cortical layer Ia-afferent terminals.

Item Type:Article
Divisions:Life Sciences > School of Chemistry, Food and Pharmacy > School of Pharmacy > Division of Pharmacology
Interdisciplinary Research Centres (IDRCs) > Centre for Integrative Neuroscience and Neurodynamics (CINN)
ID Code:1757
Uncontrolled Keywords:RWJ-333369; carisbamate; lidocaine; piriform cortical brain slices; intracellular recording
Publisher Statement:The definitive version is available at

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation