Accessibility navigation


A human volunteer study to assess the impact of confectionery sweeteners on the gut microbiota composition.

Beards, E., Tuohy, K. M. and Gibson, G. R. ORCID: https://orcid.org/0000-0002-0566-0476 (2010) A human volunteer study to assess the impact of confectionery sweeteners on the gut microbiota composition. British Journal of Nutrition, 104 (5). pp. 701-708. ISSN 1475-2662

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1017/S0007114510001078

Abstract/Summary

Sweeteners are being sourced to lower the energetic value of confectionery including chocolates. Some, especially non-digestible carbohydrates, may possess other benefits for human health upon their fermentation by the colonic microbiota. The present study assessed non-digestible carbohydrate sweeteners, selected for use in low-energy chocolates, for their ability to beneficially modulate faecal bacterial profiles in human volunteers. Forty volunteers consumed a test chocolate (low-energy or experimental chocolate) containing 22·8 g of maltitol (MTL), MTL and polydextrose (PDX), or MTL and resistant starch for fourteen consecutive days. The dose of the test chocolates was doubled every 2 weeks over a 6-week period. Numbers of faecal bifidobacteria significantly increased with all the three test treatments. Chocolate containing the PDX blend also significantly increased faecal lactobacilli (P = 0·00 001) after the 6 weeks. The PDX blend also showed significant increases in faecal propionate and butyrate (P = 0·002 and 0·006, respectively). All the test chocolates were well tolerated with no significant change in bowel habit or intestinal symptoms even at a daily dose of 45·6 g of non-digestible carbohydrate sweetener. This is of importance not only for giving manufacturers a sugar replacement that can reduce energetic content, but also for providing a well-tolerated means of delivering high levels of non-digestible carbohydrates into the colon, bringing about improvements in the biomarkers of gut health.

Item Type:Article
Refereed:Yes
Divisions:Life Sciences > School of Chemistry, Food and Pharmacy > Department of Food and Nutritional Sciences > Food Microbial Sciences Research Group
ID Code:17703
Publisher:Cambridge University Press

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation