Accessibility navigation

Characterising North Atlantic weather patterns for climate-optimal aircraft routing

Irvine, E. A., Hoskins, B. J., Shine, K. P. ORCID:, Lunnon, R. W. and Froemming, C. (2013) Characterising North Atlantic weather patterns for climate-optimal aircraft routing. Meteorological Applications, 20 (1). pp. 80-93. ISSN 1469-8080

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1002/met.1291


Daily weather patterns over the North Atlantic are classified into relevant types: typical weather patterns that may characterize the range of climate impacts from aviation in this region, for both summer and winter. The motivation is to provide a set of weather types to facilitate an investigation of climate-optimal aircraft routing of trans-Atlantic flights (minimizing the climate impact on a flight-by-flight basis). Using the New York to London route as an example, the time-optimal route times are shown to vary by over 60 min, to take advantage of strong tailwinds or avoid headwinds, and for eastbound routes latitude correlates well with the latitude of the jet stream. The weather patterns are classified by their similarity to the North Atlantic Oscillation and East Atlantic teleconnection patterns. For winter, five types are defined; in summer, when there is less variation in jet latitude, only three types are defined. The types can be characterized by the jet strength and position, and therefore the location of the time-optimal routes varies by type. Simple proxies for the climate impact of carbon dioxide, ozone, water vapour and contrails are defined, which depend on parameters such as the route time, latitude and season, the time spent flying in the stratosphere, and the distance over which the air is supersaturated with respect to ice. These proxies are then shown to vary between weather types and between eastbound and westbound routes.

Item Type:Article
Divisions:Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:25594
Uncontrolled Keywords:aviation;teleconnections
Publisher:Royal Meteorological Society

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation