Accessibility navigation


Potential anti-cancer effects of virgin olive oil phenols on colorectal carcinogenesis models in vitro

Gill, C. I. R., Boyd, A., McDermott, E., McCann, M., Servili, M., Selvaggini, R., Taticchi, A., Esposto, S., Montedoro, G., McGlynn, H. and Rowland, I. (2005) Potential anti-cancer effects of virgin olive oil phenols on colorectal carcinogenesis models in vitro. International Journal of Cancer, 117 (1). pp. 1-7. ISSN 0020-7136

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1002/ijc.21083

Abstract/Summary

The traditional Mediterranean diet is thought to represent a healthy lifestyle; especially given the incidence of several cancers including colorectal cancer is lower in Mediterranean countries compared to Northern Europe. Olive oil, a central component of the Mediterranean diet, is believed to beneficially affect numerous biological processes. We used phenols extracted from virgin olive oil on a series of in vitro systems that model important stages of colon carcinogenesis. The effect the extract on DNA damage induced by hydrogen peroxide was measured in HT29 cells using single cell microgel-electrophoresis. A significant anti-genotoxic linear trend (p=0.011) was observed when HT29 cells were pre-incubated with olive oil phenols (0, 5, 10, 25, 50, 75, 100 microg/ml) for 24 hr, then challenged with hydrogen peroxide. The olive oil phenols (50, 100 microg/ml) significantly (p=0.004, p=0.002) improved barrier function of CACO2 cells after 48 hr as measured by trans-epithelial resistance. Significant inhibition of HT115 invasion (p<0.01) was observed at olive oil phenols concentrations of 25, 50, 75, 100 microg/ml using the matrigel invasion assay. No effect was observed on HT115 viability over the concentration range 0, 25, 50 75, 100 microg/ml after 24 hr, although 75 and 100 microg/ml olive oil phenols significantly inhibited HT115 cell attachment (p=0.011, p=0.006). Olive oil phenols had no significant effect on metastasis-related gene expression in HT115 cells. We have demonstrated that phenols extracted from virgin olive oil are capable of inhibiting several stages in colon carcinogenesis in vitro.

Item Type:Article
Refereed:Yes
Divisions:Life Sciences > School of Chemistry, Food and Pharmacy > Department of Food and Nutritional Sciences > Human Nutrition Research Group
ID Code:28860
Publisher:Wiley

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation