Sesquiterpenoids lactones: benefits to plants and peopleChadwick, M., Trewin, H., Gawthrop, F. and Wagstaff, C. ORCID: https://orcid.org/0000-0001-9400-8641 (2013) Sesquiterpenoids lactones: benefits to plants and people. International Journal of Molecular Sciences, 14 (6). pp. 12780-12805. ISSN 1422-0067
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.3390/ijms140612780 Abstract/SummarySesquiterpenoids, and specifically sesquiterpene lactones from Asteraceae, may play a highly significant role in human health, both as part of a balanced diet and as pharmaceutical agents, due to their potential for the treatment of cardiovascular disease and cancer. This review highlights the role of sesquiterpene lactones endogenously in the plants that produce them, and explores mechanisms by which they interact in animal and human consumers of these plants. Several mechanisms are proposed for the reduction of inflammation and tumorigenesis at potentially achievable levels in humans. Plants can be classified by their specific array of produced sesquiterpene lactones, showing high levels of translational control. Studies of folk medicines implicate sesquiterpene lactones as the active ingredient in many treatments for other ailments such as diarrhea, burns, influenza, and neurodegradation. In addition to the anti-inflammatory response, sesquiterpene lactones have been found to sensitize tumor cells to conventional drug treatments. This review explores the varied ecological roles of sesquiterpenes in the plant producer, depending upon the plant and the compound. These include allelopathy with other plants, insects, and microbes, thereby causing behavioural or developmental modification to these secondary organisms to the benefit of the sesquiterpenoid producer. Some sesquiterpenoid lactones are antimicrobial, disrupting the cell wall of fungi and invasive bacteria, whereas others protect the plant from environmental stresses that would otherwise cause oxidative damage. Many of the compounds are effective due to their bitter flavor, which has obvious implications for human consumers. The implications of sesquiterpenoid lactone qualitiesfor future crop production are discussed.
DownloadsDownloads per month over past year
1. Heinrich, M.; Robles, M.; West, J.E.; Ortiz de Montellano, B.R.; Rodriguez, E. Ethnopharmacology of mexican Asteraceae (Compositae). Annu. Rev. Pharmacol. Toxicol. 1998, 38, 539–565.
Int. J. Mol. Sci. 2013, 14 12798
2. Ghantous, A.; Gali-Muhtasib, H.; Vuorela, H.; Saliba, N.A.; Darwiche, N. What made sesquiterpene lactones reach cancer clinical trials? Drug Discov. Tod. 2010, 15, 668–678.
3. Zhang, S.; Won, Y.-K.; Ong, C.-N.; Shen, H.-M. Anti-cancer potential of sesquiterpene lactones: Bioactivity and molecular mechanisms. Curr. Med. Chem. Anticancer Agents 2005, 5, 239–249.
4. Merfort, I. Perspectives on sesquiterpene lactones in inflammation and cancer. Curr. Drug Targ. 2011, 12, 1560–1573.
5. Wedge, D.E.; Galindo, J.C.G.; Macías, F.A. Fungicidal activity of natural and synthetic sesquiterpene lactone analogs. Phytochemistry 2000, 53, 747–757.
6. Canales, M.; Hernández, T.; Caballero, J.; de Vivar, A.R.; Avila, G.; Duran, A.; Lira, R. Informant consensus factor and antibacterial activity of the medicinal plants used by the people of San Rafael Coxcatlán, Puebla, México. J. Ethnopharmacol. 2005, 97, 429–439.
7. Rodriguez, E.; Towers, G.N.H.; Mitchell, J.C. Biological activities of sesquiterpene lactones. Phytochemistry 1976, 15, 1573–1580.
8. Ivie, G.W.; Witzel, D.A.; Rushing, D.D. Toxicity and milk bittering properties of tenulin, the major sesquiterpene lactone constituent of Helenium amarum (bitter sneezeweed). J. Agric. Food Chem. 1975, 23, 845–849.
9. DeLuque,A.P.;Galindo,J.C.G.;Macías,F.A.;Jorrín,J.Sunflowersesquiterpenelactone models induce Orobanche cumana seed germination. Phytochemistry 2000, 53, 45–50.
10. Macías, F.A.; Torres, A.; Molinllo, J.G.; Varela, R.M.; Castellano, D. Potential allelopathic sesquiterpene lactones from sunflower leaves. Phytochemistry 1996, 43, 1205–1215.
11. Food and agriculture organisation FAOStat lettuce and chicory production. Available online: http://faostat.fao.org/. (access on 15 April 2013)
12. Thompson, B.; Demark-Wahnefried, W.; Taylor, G.; McClelland, J.W.; Stables, G.; Havas, S.; Feng, Z.; Topor, M.; Heimendinger, J.; Reynolds, K.D.; et al. Baseline fruit and vegetable intake among adults in seven 5 a day study centers located in diverse geographic areas. J. Am. Diet. Assoc. 1999, 99, 1241–1248.
13. Sorensen, G.; Stoddard, A.; Peterson, K.; Cohen, N.; Hunt, M.K.; Stein, E.; Palombo, R.; Lederman, R. Increasing fruit and vegetable consumption through worksites and families in the Treatwell 5-a-day study. Am. J. Public Health 1999, 89, 54–60.
14. Casagrande, S.S.; Wang, Y.; Anderson, C.; Gary, T.L. Have Americans increased their fruit and vegetable intake? The trends between 1988 and 2002. Am. J. Prevent. Med. 2007, 32, 257–263.
15. Rogers, S.; Pryer, J.A. Who consumed 5 or more portions of fruit and vegetables per day in 1986–1987 and in 2000–2001? Pub. Health Nutr. 2012, 15, 1240–1247.
16. Bork, P.M.; Schmitz, M.L.; Kuhnt, M.; Escher, C.; Heinrich, M. Sesquiterpene lactone containing mexican indian medicinal plants and pure sesquiterpene lactones as potent inhibitors of transcription factor NF-κB. FEBS Lett. 1997, 402, 85–90.
17. Lyß,G.;Knorre,A.;Schmidt,T.J.;Pahl,H.L.;Merfort,I.TheAnti-inflammatorysesquiterpene lactone helenalin inhibits the transcription factor NF-κB by directly targeting p65. J. Biol. Chem. 1998, 273, 33508–33516.
18. Yu, F.; Utsumi, R. Diversity, regulation, and genetic manipulation of plant mono- and sesquiterpenoid biosynthesis. Cell. Mol. Life Sci. 2009, 66, 3043–3052.
Int. J. Mol. Sci. 2013, 14 12799
19. Bennett, M.H.; Mansfield, J.W.; Lewis, M.J.; Beale, M.H. Cloning and expression of sesquiterpene synthase genes from Lettuce (Lactuca sativa L.). Phytochem. 2002, 60, 255–261.
20. Cheng, A.-X.; Xiang, C.-Y.; Li, J.-X.; Yang, C.-Q.; Hu, W.-L.; Wang, L.-J.; Lou, Y.-G.; Chen, X.-Y. The rice (E)-β-Caryophyllene synthase (OsTPS3) accounts for the major inducible volatile sesquiterpenes. Phytochemistry 2007, 68, 1632–1641.
21. Picaud, S.; Olsson, M.E.; Brodelius, P.E. Improved conditions for production of recombinant plant sesquiterpene synthases in Escherichia coli. Prot. Expr. Purif. 2007, 51, 71–79.
22. Lange, G.L.; Lee, M. Synthesis of four sesquiterpenoid Lactone skeletons, germacranolide, elemanolide, cadinanolide, and guaianolide, from a single photoadduct. J. Org. Chem. 1987, 52, 325–331.
23. Little, D.B.; Croteau, R.B. Alteration of product formation by directed mutagenesis and truncation of the multiple-product sesquiterpene synthases δ-selinene synthase and γ-humulene synthase. Arch. Biochem. Biophys. 2002, 402, 120–135.
24. Schnee, C.; Kollner, T.G.; Gershenzon, J.; Degenhardt, J. The maize gene terpene synthase 1 encodes a sesquiterpene synthase catalyzing the formation of (E)-β-farnesene, (E)-nerolidol, and (E,E)-farnesol after herbivore damage. Plant Physiol. 2002, 130, 2049–2060.
25. Zhang, Z.; Gao, Z.H.; Wei, J.H.; Xu, Y.H.; Li, Y.; Yang, Y.; Meng, H.; Sui, C.; Wang, M.X. The mechanical wound transcriptome of three-year-old Aquilaria sinensis. Acta Pharma. Sin. 2012, 47, 1106–1110.
26. Seaman, F.C. Sesquiterpene lactones as taxonomic characters in the Asteraceae. Bot. Rev. 1982, 48, 121–595.
27. Cordell, G.A. Biosynthesis of sesquiterpenes. Chem. Rev. 1976, 76, 425–460.
28. Ruzicka, L. The isoprene rule and the biogenesis of terpenic compounds. Cell. Mol. Life Sci.
1953, 9, 357–367.
29. Michalska,K.;Stojakowska,A.;Malarz,J.;Dolezalová,I.;Lebeda,A.;Kisiel,W.Systematic
implications of sesquiterpene lactones in Lactuca species. Biochem. System. Ecol. 2009, 37,
174–179.
30. Ren, Y.L.; Zhou, Y.W.; Ye, Y.H. Chemical components of Lactuca and their bioactivites.
Yao Xue Xue Bao 2004, 39, 954–960.
31. Kupchan, S.M.; Eakin, M.A.; Thomas, A.M. Tumor Inhibitors. 69. Structure-cytotoxicity
relations among the sesquiterpene lactones. J. Med. Chem. 1971, 14, 1147–1152.
32. Mitchell, J.C.; Fritig, B.; Singh, B.; Towers, G.H.N. Allergic contact dermatitis from frullania
and compositae. The role of sesquiterpene lactones. J. Investig. Dermatol. 1970, 54, 233–239.
33. Wong, H.R.; Menendez, I.Y. Sesquiterpene lactones inhibit inducible nitric oxide synthase gene expression in cultured rat aortic smooth muscle cells. Biochem. Biophys. Res. Commun. 1999,
262, 375–380.
34. Mazor, R.L.; Menendez, I.Y.; Ryan, M.A.; Fiedler, M.A.; Wong, H.R. Sesquiterpene lactones
are potent inhibitors of interleukin 8 gene expression in cultured human respiratory epithelium.
Cytokine 2000, 12, 239–245.
35. Schomburg, C.; Schuehly, W.; da Costa, F.B.; Klempnauer, K.-H.; Schmidt, T.J. Natural
sesquiterpene Lactones as inhibitors of myb-dependent gene expression: Structure-activity relationships. Eur. J. Med. Chem. 2013, 63, 313–320.
Int. J. Mol. Sci. 2013, 14 12800
36. Lee, K.-H.; Huang, E.-S.; Piantadosi, C.; Pagano, J.S.; Geissman, T.A. Cytotoxicity of sesquiterpene lactones. Cancer Res. 1971, 31, 1649–1654.
37. De, P.; Baltas, M.; Bedos-Belval, F. Cinnamic acid derivatives as anticancer agents—A review. Curr. Med. Chem. 2011, 18, 1672–1703.
38. Bennett, M.H. The phytoalexin response of lettuce to challenge by Botrytis cinerea, Bremia lactucae, and Pseudomonas syringae pv. phaseolicola. Physiol. Mol. Plant Pathol. 1994, 44, 321–333.
39. Ding, X.C.; Beck, H.-P.; Raso, G. Plasmodium sensitivity to artemisinins: Magic bullets hit elusive targets. Trends Parasitol. 2011, 27, 73–81.
40. Baud, V.; Karin, M. Is NF-κB a good target for cancer therapy? Hopes and pitfalls. Nat. Rev. Drug Discov. 2009, 8, 33–40.
41. Hehner, S.P.; Heinrich, M.; Bork, P.M.; Vogt, M.; Ratter, F.; Lehmann, V.; Schulze-Osthoff, K.; Droge, W.; Schmitz, M.L. Sesquiterpene lactones specifically inhibit activation of NF-κB by preventing the degradation of IκB-α and IκB-β. J. Biol. Chem. 1998, 273, 1288–1297.
42. Hehner, S.P.; Hofmann, T.G.; Droge, W.; Schmitz, M.L. The antiinflammatory sesquiterpene lactone parthenolide inhibits NF-κB by targeting the IκB kinase complex. J. Immunol. 1999, 163, 5617–5623.
43. Siedle, B.; Garcia-Pineres, A.J.; Murillo, R.; Schulte-Monting, J.; Castro, V.; Rungeler, P.; Klaas, C.A.; da Costa, F.B.; Kisiel, W.; Merfort, I. Quantitative structure-activity relationship of sesquiterpene lactones as inhibitors of the transcription factor NF-κB. J. Med. Chem. 2004, 47, 6042–6054.
44. Chen, F.E.; Huang, D.-B.; Chen, Y.-Q.; Ghosh, G. Crystal structure of p50/p65 heterodimer of transcription factor NF-κB bound to DNA. Nature 1998, 391, 410–413.
45. Garc a-Piñeres, A.J.; Castro, V.; Mora, G.; Schmidt, T.J.; Strunck, E.; Pahl, H.L.; Merfort, I. Cysteine 38 in p65/NF-κB plays a crucial role in DNA binding inhibition by sesquiterpene lactones. J. Biol. Chem. 2001, 276, 39713–39720.
46. Pan, L.; Lantvit, D.D.; Riswan, S.; Kardono, L.B.S.; Chai, H.-B.; de Blanco, E.J.; Farnsworth, N.R.; Soejarto, D.D.; Swanson, S.M.; Kinghorn, A.D. Bioactivity-guided isolation of cytotoxic sesquiterpenes of Rolandra fruticosa. Phytochemistry 2010, 71, 635–640.
47. Takada, Y.; Murakami, A.; Aggarwal, B.B. Zerumbone abolishes NF-κB and IκBα kinase activation leading to suppression of antiapoptotic and metastatic gene expression, upregulation of apoptosis, and downregulation of invasion. Oncogene 2005, 24, 6957–6969.
48. Rüngeler, P.; Castro, V.; Mora, G.; Gören, N.; Vichnewski, W.; Pahl, H.L.; Merfort, I.; Schmidt, T.J. Inhibition of transcription factor NF-κB by sesquiterpene lactones: A proposed molecular mechanism of action. Bioorg. Med. Chem. 1999, 7, 2343–2352.
49. Youl Cho, J. Sesquiterpene lactones as a potent class of NF-B activation inhibitors. Curr. Enz. Inhib. 2006, 2, 329–341.
50. Guzman, M.L.; Rossi, R.M.; Karnischky, L.; Li, X.; Peterson, D.R.; Howard, D.S.; Jordan, C.T. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood 2005, 105, 4163–4169.
51. Ravi, R.; Bedi, A. NF-κB in cancer—A friend turned foe. Drug Resist. Updates 2004, 7, 53–67.
Int. J. Mol. Sci. 2013, 14 12801
52. Wesolowska, A.; Nikiforuk, A.; Michalska, K.; Kisiel, W.; Chojnacka-Wójcik, E. Analgesic and sedative activities of lactucin and some lactucin-like guaianolides in mice. J. Ethnopharmacol. 2006, 107, 254–258.
53. Prehn, J.H.M.; Krieglstein, J. Platelet-activating factor antagonists reduce excitotoxic damage in cultured neurons from embryonic chick telencephalon and protect the rat hippocampus and neocortex from ischemic injury in vivo. J. Neurosci. Res. 1993, 34, 179–188.
54. Ahlemeyer, B.; Möwes, A.; Krieglstein, J. Inhibition of serum deprivation- and staurosporine-induced neuronal apoptosis by Ginkgo biloba extract and some of its constituents. Eur. J. Pharmacol. 1999, 367, 423–430.
55. Giordano, O.S.; Guerreiro, E.; Pestchanker, M.J.; Guzman, J.; Pastor, D.; Guardia, T. The gastric cytoprotective effect of several sesquiterpene lactones. J. Nat. Prod. 1990, 53, 803–809.
56. Kressmann, S.; Biber, A.; Wonnemann, M.; Schug, B.; Blume, H.H.; Muller, W.E. Influence of pharmaceutical quality on the bioavailability of active components from Ginkgo biloba preparations. J. Pharm. Pharmacol. 2002, 54, 1507–1514.
57. Tamaki, H.; Robinson, R.W.; Anderson, J.L.; Stoewsand, G.S. Sesquiterpene lactones in virus-resistant lettuce. J. Agric. Food Chem. 1995, 43, 6–8.
58. Price, K.D., MS. Shepherd, R. Chan, HW-S. Fenwick, GR. Relationship between the chemical and sensory properties of exotic salad crops- coloured lettuce (Lactuca sativa) and chicory (Chicorium intybus). J. Sci. Food Agric. 1990, 53, 185–192.
59. Sweeney, C.J.; Mehrotra, S.; Sadaria, M.R.; Kumar, S.; Shortle, N.H.; Roman, Y.; Sheridan, C.; Campbell, R.A.; Murry, D.J.; Badve, S.; et al. The sesquiterpene lactone parthenolide in combination with docetaxel reduces metastasis and improves survival in a xenograft model of breast cancer. Mol. Can. Therap. 2005, 4, 1004–1012.
60. Calera, M.R.; Soto, F.; Sanchez, P.; Bye, R.; Hernandez-Bautista, B.; Anaya, A.L.; Lotina-Hennsen, B.; Mata, R. Biochemically active sesquiterpene lactones from Ratibida mexicana. Phytochemistry 1995, 40, 419–425.
61. Chaves, J.S.; Leal, P.C.; Pianowisky, L.; Calixto, J.B. Pharmacokinetics and tissue distribution of the sesquiterpene α-humulene in mice. Planta Med. 2008, 74, 1678–1683.
62. Cavin, C.; Delannoy, M.; Malnoe, A.; Debefve, E.; Touché, A.; Courtois, D.; Schilter, B. Inhibition of the expression and activity of cyclooxygenase-2 by chicory extract. Biochem. Biophys. Res. Comm. 2005, 327, 742–749.
63. Blanco, J.G.; Gil, R.R.; Bocco, J.L.; Meragelman, T.L.; Genti-Raimondi, S.; Flury, A. Aromatase inhibition by an 11,13-dihydroderivative of a sesquiterpene lactone. J. Pharmacol. Exptl. Therap. 2001, 297, 1099–1105.
64. deGraffenried, L.A.; Chandrasekar, B.; Friedrichs, W.E.; Donzis, E.; Silva, J.; Hidalgo, M.; Freeman, J.W.; Weiss, G.R. NF-κB inhibition markedly enhances sensitivity of resistant breast cancer tumor cells to tamoxifen. Annu. Oncol. 2004, 15, 885–890.
65. Nakshatri, H.; Rice, S.E.; Bhat-Nakshatri, P. Antitumor agent parthenolide reverses resistance of breast cancer cells to tumor necrosis factor-related apoptosis-inducing ligand through sustained activation of c-Jun N-terminal kinase. Oncogene 2004, 23, 7330–7344.
Int. J. Mol. Sci. 2013, 14 12802
66. Zhang, S.; Lin, Z.-N.; Yang, C.-F.; Shi, X.; Ong, C.-N.; Shen, H.-M. Suppressed NF-κB and sustained JNK activation contribute to the sensitization effect of parthenolide to TNF-α-induced apoptosis in human cancer cells. Carcinogenesis 2004, 25, 2191–2199.
67. Lamb, J.A.; Ventura, J.-J.; Hess, P.; Flavell, R.A.; Davis, R.J. JunD mediates survival signaling by the JNK signal transduction pathway. Mol. Cell 2003, 11, 1479–1489.
68. Wen, J.; You, K.-R.; Lee, S.-Y.; Song, C.-H.; Kim, D.-G. Oxidative stress-mediated apoptosis. J. Biol. Chem. 2002, 277, 38954–38964.
69. Lee, K.; Hall, I.; Mar, E.; Starnes, C.; ElGebaly, S.; Waddell, T.; Hadgraft, R.; Ruffner, C.; Weidner, I. Sesquiterpene antitumor agents: Inhibitors of cellular metabolism. Science 1977, 196, 533–536.
70. Zhang, S.; Ong, C.-N.; Shen, H.-M. Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells. Cancer Lett. 2004, 208, 143–153.
71. Price, R.N.; Nosten, F.; Luxemburger, C.; ter Kuile, F.O.; Paiphun, L.; Chongsuphajaisiddhi, T.; White, N.J. Effects of artemisinin derivatives on malaria transmissibility. Lancet 1996, 347, 1654–1658.
72. Dondorp, A.M.; Nosten, F.; Yi, P.; Das, D.; Phyo, A.P.; Tarning, J.; Lwin, K.M.; Ariey, F.; Hanpithakpong, W.; Lee, S.J.; et al. Artemisinin resistance in Plasmodium falciparum malaria. N. Eng. J. Med. 2009, 361, 455–467.
73. Asawamahasakda, W.; Ittarat, I.; Pu, Y.M.; Ziffer, H.; Meshnick, S.R. Reaction of antimalarial endoperoxides with specific parasite proteins. Antimicrob. Agents Chemother. 1994, 38, 1854–1858.
74. Eckstein-Ludwig, U.; Webb, R.J.; van Goethem, I.D.A.; East, J.M.; Lee, A.G.; Kimura, M.; O’Neill, P.M.; Bray, P.G.; Ward, S.A.; Krishna, S. Artemisinins target the SERCA of Plasmodium falciparum. Nature 2003, 424, 957–961.
75. Jambou, R.; Legrand, E.; Niang, M.; Khim, N.; Lim, P.; Volney, B.; Ekala, M.T.; Bouchier, C.; Esterre, P.; Fandeur, T.; et al. Resistance of Plasmodium falciparum field isolates to in vitro artemether and point mutations of the Serca-type PfATPase 6. Lancet 2005, 366, 1960–1963.
76. Wang, J.; Huang, L.; Li, J.; Fan, Q.; Long, Y.; Li, Y.; Zhou, B. Artemisinin directly targets malarial mitochondria through its specific mitochondrial activation. PLoS One 2010, 5, e9582.
77. Tournier, H.; Schinella, G.; Balsa, E.M.; Buschiazzo, H.; Manez, S.; Buschiazzo, P.M. Effect of the chloroform extract of Tanacetum vulgare and one of its active principles, parthenolide, on experimental gastric Ulcer in rats. J. Pharm. Pharmacol. 1999, 51, 215–219.
78. Paulsen, E.; Christensen, L.P.; Andersen, K.E. Possible cross-reactivity between para-phenylenediamine and sesquiterpene lactones. Contact Derm. 2008, 58, 120–122.
79. Mark, K.A.; Brancaccio, R.R.; Soter, N.A.; Cohen, D.E. Allergic contact and photoallergic contact dermatitis to plant and pesticide allergens. Arch. Dermatol. 1999, 135, 67–70.
80. Ferreira, J.F.S.; Janick, J. Roots as an enhancing factor for the production of artemisinin in shoot cultures of Artemisia annua. Plant Cell, Tissue Organ Cult. 1996, 44, 211–217.
81. Mannan, A.; Liu, C.; Arsenault, P.R.; Towler, M.J.; Vail, D.R.; Lorence, A.; Weathers, P.J. DMSO triggers the generation of ROS Leading to an increase in artemisinin and dihydroartemisinic acid in Artemisia annua shoot cultures. Plant Cell Rep. 2010, 29, 143–152.
82. De Jesus-Gonzalez, L.; Weathers, P.J. Tetraploid Artemisia annua hairy roots produce more artemisinin than diploids. Plant Cell Rep. 2003, 21, 809–813.
Int. J. Mol. Sci. 2013, 14 12803
83. Delabays, N.; Simonnet, X.; Gaudin, M. The genetics of artemisinin content in Artemisia annua L. and the breeding of high yielding cultivars. Curr. Med. Chem. 2001, 8, 1795–1801.
84. Kindermans, J.-M.; Pilloy, J.; Olliaro, P.; Gomes, M. Ensuring sustained ACT production and reliable artemisinin supply. Malaria J. 2007, 6, 125.
85. Wallaart, T.E.; Pras, N.; Beekman, A.C.; Quax, W.J. Seasonal variation of artemisinin and its biosynthetic precursors in plants of Artemisia annua of different geographical origin: Proof for the existence of chemotypes. Planta Med. 2000, 66, 57–62.
86. Kapoor, R.; Chaudhary, V.; Bhatnagar, A. Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza 2007, 17, 581–587.
87. Fehsenfeld, F.; Calvert, J.; Fall, R.; Goldan, P.; Guenther, A.B.; Hewitt, C.N.; Lamb, B.; Liu, S.; Trainer, M.; Westberg, H.; et al. Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry. Global Biogeochem. Cycles 1992, 6, 389–430.
88. Ruberto, G.; Baratta, M.T. Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem. 2000, 69, 167–174.
89. Ungnade, H.E.; Hendley, E.C. The bitter principle of Helenium Tenuifolium. J. Am. Chem. Soc. 1948, 70, 3921–3924.
90. Van Beek, T.A.; Maas, P.; King, B.M.; Leclercq, E.; Voragen, A.G.J.; de Groot, A. Bitter sesquiterpene lactones from chicory roots. J. Agric. Food Chem. 1990, 38, 1035–1038.
91. Peters, A.M.; Haagsma, N.; Gensch, K.-H.; van Amerongen, A. Production and characterization of polyclonal antibodies against the bitter sesquiterpene lactones of chicory (Cichorium intybus L.). J. Agric. Food Chem. 1996, 44, 3611–3615.
92. Brockhoff, A.; Behrens, M.; Massarotti, A.; Appendino, G.; Meyerhof, W. Broad tuning of the human bitter taste receptor hTAS2R46 to various sesquiterpene lactones, clerodane and labdane diterpenoids, Strychnine, and denatonium. J. Agric. Food Chem. 2007, 55, 6236–6243.
93. Brockhoff, A.; Behrens, M.; Niv, M.Y.; Meyerhof, W. Structural requirements of bitter taste receptor activation. Proc. Natl. Acad. Sci. USA 2010, 107, 11110–11115.
94. Kim, U.; Wooding, S.; Ricci, D.; Jorde, L.B.; Drayna, D. Worldwide haplotype diversity and coding sequence variation at human bitter taste receptor loci. Hum Mutat. 2005, 26, 199–204.
95. Behrens, M.; Reichling, C.; Batram, C.; Brockhoff, A.; Meyerhof, W. Bitter taste receptors and their cells. Annu. N. Y. Acad. Sci. 2009, 1170, 111–115.
96. Loreto, F.; Ciccioli, P.; Brancaleoni, E.; Cecinato, A.; Frattoni, M.; Sharkey, T.D. Different sources of reduced carbon contribute to form three classes of terpenoid emitted by Quercus ilex L. Leaves. Proc. Natl. Acad. Sci. USA 1996, 93, 9966–9969.
97. Holopainen, J.K. Multiple functions of inducible plant volatiles. Trends Plant Sci. 2004, 9, 529–533.
98. Knight, A.; Light, D. Attractants from bartlett pear for codling moth, Cydia pomonella (L.),
larvae. Naturwissenschaften 2001, 88, 339–342.
99. Umehara, M.; Hanada, A.; Yoshida, S.; Akiyama, K.; Arite, T.; Takeda-Kamiya, N.; Magome, H.;
Kamiya, Y.; Shirasu, K.; Yoneyama, K.; et al. Inhibition of shoot branching by new terpenoid
plant hormones. Nature 2008, 455, 195–200.
100. Loreto, F.; Schnitzler, J.-P. Abiotic stresses and induced BVOCs. Trends Plant Sci. 2010, 15,
154–166.
Int. J. Mol. Sci. 2013, 14 12804
101. Wijeratne, E.M.K.; Turbyville, T.J.; Zhang, Z.; Bigelow, D.; Pierson, L.S.; VanEtten, H.D.; Whitesell, L.; Canfield, L.M.; Gunatilaka, A.A.L. Cytotoxic constituents of Aspergillus terreus from the rhizosphere of Opuntia versicolor of the sonoran desert. J. Nat. Prod. 2003, 66, 1567–1573.
102. Lin, C.; Owen, S.M.; Peñuelas, J. Volatile organic compounds in the roots and rhizosphere of Pinus spp. Soil Biol. Biochem. 2007, 39, 951–960.
103. Poecke, R.M.P.v.; Dicke, M. Signal transduction downstream of salicylic and jasmonic acid in Herbivory-induced parasitoid attraction by Arabidopsis is independent of JAR1 and NPR1. Plant Cell Environ. 2003, 26, 1541–1548.
104. Kubo, I.; Ganjian, I. Insect antifeedant terpenes, hot tasting to humans. Experientia 1981, 37, 1063–1064.
105. Caputi, L.; Carlin, S.; Ghiglieno, I.; Stefanini, M.; Valenti, L.; Vrhovsek, U.; Mattivi, F. Relationship of changes in rotundone content during grape ripening and winemaking to manipulation of the ―peppery‖ character of wine. J. Agric. Food Chem. 2011, 59, 5565–5571.
106. Ikemoto, Y.; Matsuzawa, Y.; Mizutani, J. The effect of antifeedants against the level of biogenic amines in the central nervous system of the Lepidopteran insect (Spodoptera litura). Pesticide Biochem. Physiol. 1995, 52, 60–70.
107. Koul, O. Phytochemicals and insect control: An antifeedant approach. Crit. Rev. Plant Sci. 2008, 27, 1–24.
108. Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582.
109. Akiyama, K.; Matsuzaki, K.-i.; Hayashi, H. Plant sesquiterpenes induce hyphal branching in
arbuscular mycorrhizal fungi. Nature 2005, 435, 824–827.
110. Thaler, J.S.; Farag, M.A.; Paré, P.W.; Dicke, M. Jasmonate-deficient plants have reduced direct
and indirect defences against Herbivores. Ecol. Lett. 2002, 5, 764–774.
111. Guenther, A. The contribution of reactive carbon emissions from vegetation to the carbon
balance of terrestrial ecosystems. Chemosphere 2002, 49, 837–844.
112. Ormeño, E.; Bousquet-Mélou, A.; Mévy, J.-P.; Greff, S.; Robles, C.; Bonin, G.; Fernandez, C.
Effect of intraspecific competition and substrate type on terpene emissions from some
mediterranean plant species. J. Chem. Ecol. 2007, 33, 277–286.
113. Millán, M.; Salvador, R.; Mantilla, E.; Artnano, B. Meteorology and photochemical air pollution
in southern europe: Experimental results from EC research projects. Atmos. Environ. 1996, 30,
1909–1924.
114. Karban, R.; Baldwin, I.T.; Baxter, K.J.; Laue, G.; Felton, G.W. Communication between plants:
Induced resistance in wild tobacco plants following clipping of neighboring sagebrush.
Oecologia 2000, 125, 66–71.
115. Ninkovic, V. Volatile communication between barley plants affects biomass allocation.
J. Exp. Bot. 2003, 54, 1931–1939.
116. Bais, H.P.; Weir, T.L.; Perry, L.G.; Gilroy, S.; Vivanco, J.M. The role of root exudates in
rhizosphere interactions with plantsand other organisms. Annu. Rev. Plant Biol. 2006, 57, 233–266.
117. Ormeño, E.; Fernandez, C.; Mévy, J.-P. Plant coexistence alters terpene emission and content of
mediterranean species. Phytochemistry 2007, 68, 840–852.
118. Karban, R.; Shiojiri, K. Self-recognition affects plant communication and defense. Ecol. Lett.2009, 12, 502–506.
119. Ninkovic, V.; Åhman, I. Aphid acceptance of Hordeum genotypes is affected by plant volatile exposure and is correlated with aphid growth. Euphytica 2009, 169, 177–185.
120. Karban, R.; Shiojiri, K.; Ishizaki, S.; Wetzel, W.C.; Evans, R.Y. Kin recognition affects plant communication and defence. Proc. R. Soc. B 2013. doi:10.1098/rspb.2012.3062.
121. Sessa, R.A.; Bennett, M.H.; Lewis, M.J.; Mansfield, J.W.; Beale, M.H. Metabolite profiling of sesquiterpene lactones from Lactuca species. J. Biol. Chem. 2000, 275, 26877–26884.
122. An, Y.; Shen, Y.-B.; Wu, L.-J.; Zhang, Z.-X. A change of phenolic acids content in poplar leaves induced by methyl salicylate and methyl jasmonate. J. For. Res. 2006, 17, 107–110.
123. Preston, C.A.; Betts, H.; Baldwin, I.T. Methyl jasmonate as an allelopathic agent: Sagebrush inhibits germination of a neighboring tobacco, Nicotiana Attenuata. J. Chem. Ecol. 2002, 28, 2343–2369.
124. Kegge, W.; Pierik, R. Biogenic volatile organic compounds and plant competition. Trends Plant Sci. 2010, 15, 126–132.
125. Köllner, T.G.; Schnee, C.; Gershenzon, J.; Degenhardt, J. The sesquiterpene hydrocarbons of maize (Zea mays) form five groups with distinct developmental and organ-specific distributions. Phytochemistry 2004, 65, 1895–1902.
126. Ma, C.; Wang, H.; Lu, X.; Xu, G.; Liu, B. Metabolic fingerprinting investigation of Artemisia annua L. in different stages of development by gas chromatography and gas chromatography-mass spectrometry. J. Chromatog. A 2008, 1186, 412–419. University Staff: Request a correction | Centaur Editors: Update this record |