Accessibility navigation

Morphological decomposition in Broca's aphasia

Tsapkini, K., Peristeri, E., Tsimpli, I. M. and Jarema, G. (2013) Morphological decomposition in Broca's aphasia. Aphasiology, 28 (3). pp. 296-319. ISSN 1464-5041

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1080/02687038.2013.853022


Background: Few studies have investigated how individuals diagnosed with post-stroke Broca’s aphasia decompose words into their constituent morphemes in real-time processing. Previous research has focused on morphologically complex words in non-time-constrained settings or in syntactic frames, but not in the lexicon. Aims: We examined real-time processing of morphologically complex words in a group of five Greek-speaking individuals with Broca’s aphasia to determine: (1) whether their morphological decomposition mechanisms are sensitive to lexical (orthography and frequency) vs. morphological (stem-suffix combinatory features) factors during visual word recognition, (2) whether these mechanisms are different in inflected vs. derived forms during lexical access, and (3) whether there is a preferred unit of lexical access (syllables vs. morphemes) for inflected vs. derived forms. Methods & Procedures: The study included two real-time experiments. The first was a semantic judgment task necessitating participants’ categorical judgments for high- and low-frequency inflected real words and pseudohomophones of the real words created by either an orthographic error at the stem or a homophonous (but incorrect) inflectional suffix. The second experiment was a letter-priming task at the syllabic or morphemic boundary of morphologically transparent inflected and derived words whose stems and suffixes were matched for length, lemma and surface frequency. Outcomes & Results: The majority of the individuals with Broca’s aphasia were sensitive to lexical frequency and stem orthography, while ignoring the morphological combinatory information encoded in the inflectional suffix that control participants were sensitive to. The letter-priming task, on the other hand, showed that individuals with aphasia—in contrast to controls—showed preferences with regard to the unit of lexical access, i.e., they were overall faster on syllabically than morphemically parsed words and their morphological decomposition mechanisms for inflected and derived forms were modulated by the unit of lexical access. Conclusions: Our results show that in morphological processing, Greek-speaking persons with aphasia rely mainly on stem access and thus are only sensitive to orthographic violations of the stem morphemes, but not to illegal morphological combinations of stems and suffixes. This possibly indicates an intact orthographic lexicon but deficient morphological decomposition mechanisms, possibly stemming from an underspecification of inflectional suffixes in the participants’ grammar. Syllabic information, however, appears to facilitate lexical access and elicits repair mechanisms that compensate for deviant morphological parsing procedures.

Item Type:Article
Divisions:Life Sciences > School of Psychology and Clinical Language Sciences > Department of Clinical Language Sciences
Life Sciences > School of Psychology and Clinical Language Sciences > Language and Cognition
ID Code:35149
Publisher:Taylor and Francis

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation