Accessibility navigation


Thermal and pressure stability of myrosinase enzymes from black mustard (Brassica nigra L. W.D.J Koch. var. nigra), brown mustard (Brassica juncea L. Czern. var. juncea) and yellow mustard (Sinapsis alba L. Subsp Maire) seeds

Okunade, O. A., Ghawi, S. K., Methven, L. and Niranjan, K. ORCID: https://orcid.org/0000-0002-6525-1543 (2015) Thermal and pressure stability of myrosinase enzymes from black mustard (Brassica nigra L. W.D.J Koch. var. nigra), brown mustard (Brassica juncea L. Czern. var. juncea) and yellow mustard (Sinapsis alba L. Subsp Maire) seeds. Food Chemistry, 187. pp. 485-490. ISSN 0308-8146

[img]
Preview
Text - Accepted Version
· Available under License Creative Commons Attribution Non-commercial No Derivatives.
· Please see our End User Agreement before downloading.

677kB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1016/j.foodchem.2015.04.054

Abstract/Summary

This study investigates the effects of temperature and pressure on inactivation of myrosinase extracted from black, brown and yellow mustard seeds. Brown mustard had higher myrosinase activity (2.75 un/mL) than black (1.50 un/mL) and yellow mustard (0.63 un/mL). The extent of enzyme inactivation increased with pressure (600-800 MPa) and temperature (30-70 °C) for all the mustard seeds. However, at combinations of lower pressures (200-400 MPa) and high temperatures (60-80 °C), there was less inactivation. For example, application of 300 MPa and 70 °C for 10 minutes retained 20%, 80% and 65% activity in yellow, black and brown mustard, respectively, whereas the corresponding activity retentions when applying only heat (70 °C, 10min) were 0%, 59% and 35%. Thus, application of moderate pressures (200-400 MPa) can potentially be used to retain myrosinase activity needed for subsequent glucosinolate hydrolysis.

Item Type:Article
Refereed:Yes
Divisions:Life Sciences > School of Chemistry, Food and Pharmacy > Department of Food and Nutritional Sciences > Food Research Group
ID Code:43750
Publisher:Elsevier

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation