Accessibility navigation

Bjerknes compensation and the decadal variability of the energy transports in a coupled climate model

Shaffrey, L. ORCID: and Sutton, R. ORCID: (2006) Bjerknes compensation and the decadal variability of the energy transports in a coupled climate model. Journal Of Climate, 19 (7). pp. 1167-1181. ISSN 1520-0442

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1175/JCLI3652.1


In the 1960s, Jacob Bjerknes suggested that if the top-of-the-atmosphere (TOA) fluxes and the oceanic heat storage did not vary too much, then the total energy transport by the climate system would not vary too much either. This implies that any large anomalies of oceanic and atmospheric energy transport should be equal and opposite. This simple scenario has become known as Bjerknes compensation. A long control run of the Third Hadley Centre Coupled Ocean-Atmosphere General Circulation Model (HadCM3) has been investigated. It was found that northern extratropical decadal anomalies of atmospheric and oceanic energy transports are significantly anticorrelated and have similar magnitudes, which is consistent with the predictions of Bjerknes compensation. ne degree of compensation in the northern extratropics was found to increase with increasing, time scale. Bjerknes compensation did not occur in the Tropics, primarily as large changes in the surface fluxes were associated with large changes in the TOA fluxes. In the ocean, the decadal variability of the energy transport is associated with fluctuations in the meridional overturning circulation in the Atlantic Ocean. A stronger Atlantic Ocean energy transport leads to strong warming of surface temperatures in the Greenland-Iceland-Norwegian (GIN) Seas. which results in a reduced equator-to-pole surface temperature gradient and reduced atmospheric baroclinicity. It is argued that a stronger Atlantic Ocean energy transport leads to a weakened atmospheric transient energy transport.

Item Type:Article
Divisions:Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:5248
Uncontrolled Keywords:Atlantic thermohaline circulation; heat-transport; ocean atmosphere mechanism; SST
Publisher:American Meteorological Society

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation